Modelling technogenic causes of short-period climate anomalies
The scope of anthropogenic influence onnature is all-planetary at present. Technogenic disasters are more frequent due to the intensive environmental pollution caused by extractionand transportation of big volumes of hydrocarbons (oil, in particular). It is now essential to mark the technogenic changes in theenvironment. A major disaster occurred in the Gulf of Mexico, when from April till June 2010, about 1 mln. tons of raw oil leaked intothe Atlantic Ocean. The Gulf Stream spread the oil over around 1 mln. km2 of the ocean surface. An anomalously hot summer followedin Europe and Russia, as well as an anomalously intensive tornado season at the Atlantic Coast of the USA. The aim of the article is tofind connection between phenomena of large-scale technogenic pollution and short-period climate anomalies. In the end of 1980s -1990s the authors of the article developed several physical models of light dispersing and consuming environments, which allowedgrounding new mathematical models of natural processes and first explaining some phenomena under study, including the existence of asubsurface temperature maximum; they are applied in this article. Here, new physical and mathematical models are given of water-andheatbalance of water bodies and atmospheric flows, which form above the water surface polluted by oil leaks. Contaminations on thewater surface are semitransparent water-oil emulsions, films of foreign particles with various physical and geometric parameters, whichdefine the selective properties of weakening of warmth radiant fluxes in water in visible, near- and mid-infrared wavelength ranges ofsolar radiation and atmosphere under natural convection conditions. The model calculations allowed receiving new results on depthtemperature distribution of seawater with surface contaminated with oil film and emulsions. The sub-surface temperature maximumforms in water, which causes an increase in the reflection of solar radiation into the atmosphere and a decrease of warmth flow into thedepth of the ocean. Thus, technogenic pollution causes a radical restructure of heat balance between seawater and atmosphere. It resultsin 1. troposphere overheating, which create Rossby waves stabilization and conditions for long anti-cyclones formation; 2. a disastrousdecrease of water evaporation in the most energy active zone of the Atlantic Ocean - the Gulf Stream; 3. cooling of deep ocean layers.
Keywords
аномалии климата,
загрязнение,
оптические свойства среды,
физическая модель,
математическая модель,
climate anomaly,
optical properties of medium,
physical model,
mathematical modelAuthors
Krass Maksim S. | Finance University under the Government of the Russian Federation(Moscow) | vurga@mail.ru |
Merzlikin Vladimir G. | Moscow State Technical University MAMI | merzlikinv@mail.ru |
Sidorov Oleg V. | A.N. Kosygin Moscow State Textile University | sid_ov@mail.ru |
Всего: 3
References
Малинин В.Н. Разлив нефти в Мексиканском заливе. РГГМУ. СПб., 2010. URL: http://online812.ru/2010/09/28/ 012/pdf/
NOAA (National Oceanic @ Atmospheric Administration) / ESRL (Earth System Research Laboratory). Physical Science Division. URL: http://blog.agu.org/geospace/2010/08/25/blocked- up- weather/
Красс М.С. Математические модели и численное моделирование в гляциологии. М.: МГУ, 1981. 40 с.
Красс М.С., Геворкян С.Г., Мерзликин В.Г., Товстоног В.А. Методика расчета радиационных и температурных полей снежных и ледяных массивов // Материалы гляциологических исследований. 2000. Вып. 90. С. 142-147.
Howe J.T., Green M.J., Weston K.C. Thermal shielding by subliming volume reflectors in convective and intense radiative environments // AAIA Journal. 1973. Vol. 11, № 7. NASA Ames research center. Moffet Field, Calif. U.S.A.
Merzlikin V., Gutierrez Ojeda M., Sidorov O., Timonin V. New Selectively Absorbing and Scattering Нeat-Insulating Coatings of the Combustion Chamber for the Low-Heat-Rejection Diesel // SAE Techn. Pap. Ser., № 07M-171, 2007.
Доронин Ю.П. Физика океана. СПб., 2000. 287 с.
Федоров К.Н., Гинзбург А.И. Приповерхностный слой океана. Л.: Гидрометеоиздат, 1988. 304 с.
Grassl H. The dependence of the measured cool skin of ocean on wind stress and total heat flux // Boundary-Layer meteorology. 1976. Vol. 10, № 4. Р. 465-474.
Wells A.J., Cenedes C.Е., Farrar J.T., Zappa C.J. Variations in Ocean Surface Temperature due to Near-Surface Flow: Straining the Cool Skin Layer // J. of Phys. Oceanography. 2009. Vol. 39. Р. 2685-2710.
Keenlyside N., Tsuang B.-J. Final report: Scale Interactions in a Coupled Climate Model. «Advancing understanding of the upper ocean diurnal cycle and its relevance to climate». Joint DFG-NSC project: 446 TAI 113/33/0-1. URL: http://www.ifm-geomar.de/file
Чавро А.И. Физические основы и методы определения температуры поверхности океана. М.: Изд-во АН СССР, 1990. 173 с.
Manara J., Arduini-Schuster M., Ratzer-Scheibe H.-J., Schulz U. Infrared-optical properties and heat transfer coefficients of semitransparent thermal barrier coatings // Surface and Coatings Technology. 2009. Vol. 203, is. 8. 15 January. Р. 1059-1068.
Товстоног В.А. Анализ теплообмена в светорассеивающих материалах, нагреваемых излучением // Физика и химия обработки материалов. 1985. № 3. С. 35-40.
Шифрин К.С., Ионина С.Н. Тепловое излучение и отражение волнующейся поверхности моря в микроволновой области // Труды ГГО. 1968. Вып. 222. С. 22-48.
Артемьев А.Н. Взаимодействие атмосферы и подстилающей поверхности на антарктическом плато // Тр. САЭ. 1976. Т. 66. 71 с.
Красс М.С., Мерзликин В.Г. Радиационная теплофизика снега и льда. Л.: Гидрометеоиздат, 1990. 262 с.
Koh G., Jordan R. Sub-surface melting in seasonal snow cover // J. of Glaciology. 1995. Vol. 41, № 139. Р. 474-482.
Монин А.С. Климат как проблема физики // Успехи физических наук. 2000. Т. 70, № 4. С. 419-445.
Красс М.С. Моделирование эколого-экономических систем. М.: ИНФРА-М, 2010. 272 с.
Стратегический прогноз изменений климата Российской Федерации на период до 2010-2015 гг. и их влияния на отрасли экономики России. М.: Федеральная служба по гидрометеорологии и контролю окружающей среды (Росгидромет), 2006.
Красс М.С., Мерзликин В.Г. Техногенные аномалии климата и стратегическое планирование // Экономические стратегии. 2011. № 4.