Reversals and excursions of geomagnetic field: geophysical factors of speciation | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2012. № 354.

Reversals and excursions of geomagnetic field: geophysical factors of speciation

Being under wide discussion, speciation is now supposed to be driven by rare events that happen in the environment.Comparing the ages of the known evolutionary events of humans and fauna with dates of some excursions and reversals of thegeomagnetic field (GMF), we revealed their simultaneity. To see if it is possible to attribute the life evolution to the effect of theGMF excursions and reversals on biota we discuss the factors developing during these events. Known to occur in the conditions oflowered GMF intensity the GMF excursions and reversals are accompanied by the increase of cosmic rays (CR) particles flux enteringthe atmosphere. CR particles ionise the atmosphere atoms resulting in the increase of radiation level at the Earth surface. By ourevaluations and by use of reference data we argue that the Earth atmosphere density is not high enough to shield the Earth surfacefrom exposure to the CR particles during GMF excursions and reversals when under GMF intensity lowering by ten times the densityof the CR flux increases on six orders inducing the rise of radiation level on three orders, which is a significant impact on biologicobjects. Climate change accompanying the GMF excursions and reversals is the next factor. Relations between excursions andclimate remain unsolved, because climate cooling and warming are recorded. As we revealed earlier, the type of the climate changeaccompanying the excursion is determined by the atmosphere optic properties before the excursion and either climate cooling orwarming may occur. The duration of GMF lowering intensity period related to the excursion is a substantial factor. It is about 50thousand years when the field intensity is low for Blake excursion. Considering the negative influence of this factor in view of itscontribution to the radiation level increase it is necessary to take into account the data on radio-protective effect of hypogeomagneticfield on biologic objects. Thus, the GMF excursions and reversals features affecting biota are the duration of GMFlowering intensity period, a sizeable increase of radiation level and climate change. It seems evident that synchronism of the factorslisted above, operating during the GMF excursions and reversals, is dominant when considering the correlation between speciationand GMF excursions and reversals.

Download file
Counter downloads: 290

Keywords

геомагнитное поле, экскурс, инверсия, видообразование, geomagnetic field, excursion, reversal, speciation

Authors

NameOrganizationE-mail
Kuznetsova Natalia D.A.A. Trofimuk Institute of Petroleum Geology and Geophysics SB RAS (Novosibirsk)paratundra@mail.ru
Kuznetsov Vladimir V.A.A. Trofimuk Institute of Petroleum Geology and Geophysics SB RAS (Novosibirsk)ikir@academ.org
Всего: 2

References

Venditti C. et al. Phylogenies reveal new interpretation of speciation and the Red Queen // Nature. 2010. Vol. 463. P. 349-352.
Вельков В.В. Новые представления о молекулярных механизмах эволюции: стресс повышает генетическое разнообразие // Молекулярная биология. 2002. Т. 36, № 2. С. 277-285.
Flagstad O. et al. Environmental change and rates of evolution: the phylogeographic pattern within the hartebeest complex as related to climatic variation // Proc. R. Soc. Lond. B. 2000. Vol. 268. P. 667-677.
DeMenocal P.B. African climate change and faunal evolution during the Pliocene-Pleistocene // Earth Planet. Sci. Lett. 2004. Vol. 220. P. 3-24.
Behrensmeyer A.K. Climate change and human evolution // Science. 2006. Vol. 311. P. 476-478.
Roberts A. Geomagnetic excursions: Knowns and unknowns // Geoph. Res. Lett. 2008. Vol. 35. L17307. doi:10.1029/2008GL034719.
Coop G. et al. The Timing of Selection at the Human FOXP2 // Gene. Mol. Biol. Evol. 2008. Vol. 25, № 7. P. 1257-1259.
Evans P.D. et al. Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans // Science. 2005. Vol. 309. P. 1717-1720.
Ambrose S.H. Late Pleistocene human population bottlenecks, volcanic winter and differentiation of modern humans // J. Hum. Evol. 1998. Vol. 34. P. 623-651.
Cavalli-Sforza L.L., Feldman M.W. The application of molecular genetic approaches to the study of human evolution // Nature Genetics. 2003. Vol. 33. P. 266-275.
Green R.E. et al. A Complete Neandertal Mitochondrial Genome Sequence Determined by High-Throughput Sequencing // Cell. 2008. Vol. 134. P. 416-426.
Knudsen M.F. et al. High-resolution data of the Iceland Basin geomagnetic excursion from ODP sites 1063 and 983: Existence of intense flux patches during the excursion? // Earth Planet. Sci. Lett. 2006. Vol. 251. P. 18-32.
Horng С-S. et al. Astronomically calibrated ages for geomagnetic reversals within the Matuyama chron // Earth, planets and space. 2002. Vol. 54, № 6. P. 679-690.
Leonard W.R. et al. Effects of Brain Evolution on Human Nutrition and Metabolism // Annual Review of Nutrition. 2007. Vol. 27. P. 311-327.
Clague J. et al. Open letter by International Union for the Quaternary Research (INQUA) Executive Committee // INQUA Newsletter. 2006. Vol. 16, № 1. P. 158-159. URL: http://www.inqua.tcd.ie/documents/QP%2016-1.pdf
Stedman H.H. et al. Myosin gene mutation correlates with anatomical changes in the human lineage // Nature. 2004. Vol. 428. P. 415-418.
Chou H.H. et al. Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution // Proc. Natl. Acad. Sci. USA. 2002. Vol. 99. P. 11736-11741.
Valet J.-P., Meynadier L. Geomagnetic field intensity and reversals during the past four million years // Nature. 1993. Vol. 366. P. 234-238.
Cela-Conde C.J., Ayala F.J. Genera of human lineage // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100. P. 10133-10135.
Jacobs J.A. Reversals of the Earth's magnetic field. 1994. Second edition. Cambridge University Press. 346 p.
Takahata N. et al. Divergence time and population size in the Lineage leading to modern Humans // Theoretical population biology. 1995. Vol. 48. P. 198-221.
Glazko G.V., Nei M. Estimation of Divergence Times for Major Lineages of Primate Species // Mol. Biol. Evol. 2003. Vol. 20, № 3. P. 424-434.
Roca A.L. et al. Genetic evidence for two species of Elephant in Africa // Science. 2001. Vol. 293. P. 1473-1477.
Griswold C.K., Baker A.J. Time to the most recent common ancestor and divergence times of populations of common chaffinches (Fringilla coelebs) in Europe and North Africa: insights into Pleistocene refugia and current levels of migration // Evolution Int.
Koon W.F. et al. Parkin Inferring the phylogeny of disjunct populations of the azure-winged magpie Cyanopica cyanus from mitochondrial control region sequences // Proc. R. Soc. Lond. B. 2002. Vol. 269. P. 1671-1679.
Kittler R. et al. Molecular Evolution of Pediculus humanus and the Origin of Clothing // Current Biology. 2003. Vol. 13. P. 1414-1417.
Lindqvist C. et al. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear // Proc. Natl. Acad. Sci. USA. 2010. Vol. 107, № 11. P. 5053-5057.
Ferk A., Leonhardt R. The Laschamp geomagnetic field excursion recorded in Icelandic lavas // Physics of the Earth and Planetary Interiors. 2009. Vol. 177. P. 19-30.
Waddington C.J. Paleomagnetic Field Reversals and Cosmic radiation // Science. 1967. Vol. 158. P. 913-915.
Белишева Н.К., Гак Е.З. Значение вариаций космических лучей для функционирования биосистем // Сборник научных докладов VII Международной конференции «Экология и развитие Севера-Запада России». СПб., 2002. С. 118-129.
Grieβmeier J.-M. et al. Cosmic ray impact on extrasolar Earth-like planets in close-in habitable zones // Astrobiology. 2005. Vol. 5, № 5. P. 587-603.
Thorne M.C. Background radiation: natural and man-made // J. Radiol. Prot. 2003. Vol. 23. P. 29-42.
Бердоносов С.С., Сапожников Ю.С. Ионизирующее излучение и окружающая среда // Соросовский образовательный журнал. 2001. Т. 7, № 2. С. 40-46.
Самнер Д. и др. Медицинские последствия ионизирующей радиации // Бюллетень «Гражданская инициатива». 1999. № 3 (4). URL: http://www.csgi.ru/gi/gi4/06.htm
Модель космоса. Т. 1: Физические условия в космическом пространстве. М. : КДУ, 2007. 872 с.
Sakamoto S. et al. Levels of radiation exposure near AOS and OSF // ALMA MEMO. 2003. № 446. URL: http://science.nrao. edu/alma/aboutALMA/ Technology/ALMA_Memo_Series/main_alma_memo_series.shtml
Furukawa M. et al. Observations of Cosmic Ray Intensity in the Brazilian Geomagnetic Anomaly Region. European International Radiation Protection Association (IRPA) 10 - HIROSHIMA - May 2000 Proceedings. P-1a-35. URL: http://www2000.irpa.net/irpa10/cdrom/0
Панасюк М.И. Странники Вселенной, или Эхо Большого взрыва. Фрязино : Век 2, 2005. 272 с.
Harrison C.G. Evolutionary processes and reversals of the Earth's magnetic field // Nature. 1968. Vol. 217. P. 46-47.
Поспелова Г.А. Геомагнитные экскурсы хрона Брюнес и глобальные климатические осцилляции // Физика Земли. 2000. № 8. C. 3-14.
Christl M. et al. Evidence for a link between the flux of galactic cosmic rays and Earth's climate during the past 200,000 years // J. Atmosph. Solar- Terrestr. Physics. 2004. Vol. 66. P. 313-322.
Svensmark H. Cosmoclimatology: a new theory emerges // Astronomy & Geophysics. 2007. Vol. 48, № 1. P. 1.18-1.24. doi:10.1111/j.1468 4004.2007.48118
Нигматулин Р.И. Во власти океана // Наука в России. 2010. № 4. С. 54-62.
Svesson A. et al. The Greenland ice core chronology 2005, 15-42 ka. P. 2: comparison to other records // Quaternary Science Reviews. 2006. Vol. 25 (23-24). P. 3258-3267.
Кузнецов В.В., Кузнецова Н.Д. Влияние космического излучения и вековых вариаций геомагнитного поля на климат и эволюцию жизни на Земле. URL: http://kcs.dvo.ru/ikir/Russian/Science/2004/3-11.pdf
Kuznetsov V.V., Kuznetsova N.D. The Earth Palaeoclimate Response to Cosmic Rays Exposure During Geomagnetic Field Excursions Proc. 6-th Int. conf. «Problems of GEOCOSMOS». S.-Petersburg, 2006. P. 112-115.
Viera L.E.A., da Silva L.A. Geomagnetic modulation of clouds effects in the Southern Hemisphere Magnetic Anomaly through lower atmosphere cosmic rays effects // Geoph. Res. Lett. 2006. Vol. 33. L14802. doi: 10.1029/2006GL026389.
Lund S. et al. A summary of Brunhes paleomagnetic field variability recorded in Ocean Drilling Program cores // Phys. Earth Planet. Inter. 2006. Vol. 156. P. 194-204.
Menabreaz L. et al. Paleomagnetic record of the late Pleistocene reef sequence of Tahiti (French Polynesia): A contribution to the chronology of the deposits // Earth Planet. Sci. Lett. 2010. Vol. 294 (1-2). P. 58-68.
Zhu R.X. et al. The Blake geomagnetic polarity episode recorded in Chinese loess // Geoph. Res. Lett. 1994. Vol. 21, № 8. P. 697-700.
Воронин А.Ю. и др. Влияние гипогеомагнитного поля на устойчивость организмов к ионизирующей радиации // Материалы Международного симпозиума «Гелиогеофизические факторы и здоровье человека». Новосибирск, 2005. С. 115-116.
Воронин А.Ю. и др. Повышение устойчивости организма к острому охлаждению под воздействием гипогеомагнитного поля // Материалы Международного симпозиума «Гелиогеофизические факторы и здоровье человека». Новосибирск, 2005. С. 116.
 Reversals and excursions of geomagnetic field: geophysical factors of speciation | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2012. № 354.

Reversals and excursions of geomagnetic field: geophysical factors of speciation | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2012. № 354.

Download file