On interrelation of mathematical knowledge and objective reality | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2012. № 356.

On interrelation of mathematical knowledge and objective reality

The problem of the ontological basis of mathematics is one of the central problems of math philosophy.Mathematics ontology is a special philosophical discipline aimed at revealing of general laws of mathematical object's being andmathematical reality as a whole. Its problem field is defined, first of all, by questions: "what is the mathematical object?" and "how doesit exist?" The review of the leading philosophical doctrines, each of which defends its own point of view on mathematical reality andways of its description, shows that the basic ideological opponents throughout the history of thought, since Antiquity, are representativesof realism (Plato, Leibniz, Frege, Russell, etc.) and constructivism (Kant, Brouwer, Weyl, etc.). It is shown that dispute of the considered competing research traditions can be considered in the context of the dialectic contradictions presented by the relation of pairs ofontological and modal categories ("individual-general", "subject-object", "essence-phenomenon", "final-infinite", "possibleimpossible",etc.). It is important to notice that the article does not deal with dialectic materialism, but with dialectics as a whole powerfulmethodology of rational knowledge. Some results reflected in the work show that dialectics is not only a reliable method of comprehensionof mathematical object's being in its development - it is a basis of the analysis of categorically represented system of extrahistoricalinvariant math bases. In work it is shown that interrelated categories of essence, phenomenon, relation, property, quality,quantity, measure, individual, plural, discrete, infinite, etc. enrich and constitute multidimensional mention of mathematical object'sbeing. Modal categories "necessary", "real" and "possible" play a special role in this process. The content of key mathematical conceptsreveals in their deep interrelation with basic philosophical categories. At the same time the author makes an attempt of estimation of therole of practice and experience in formation and development of mathematical knowledge. He comes to a conclusion that practice is themajor moment of the rational knowledge (including mathematical thinking) ontologisation. The perspective direction of research ofinterrelation between mathematical knowledge and objective reality is the "activity approach", in its non-metaphysical version removingcontradictions between extreme measures of apriorism and Platonism. According to it, the mathematics basis is absolute representationsreflecting universal requirements to objects of a reality from the point of view of human activity. Thus, possibility of practice is definedby pre-experience of mathematical thinking in its real interrelation with primary structures of activity. In preparing the article the authoraddressed to the works of Russian (V.V. Tselishchev, V.Ya. Perminov, I.N. Burova, A.G. Barabashev, etc.) and foreign (N. Mouloud, F.Kitcher, S. Kripke, etc.) experts engaged in the given problems.

Download file
Counter downloads: 350

Keywords

categories, practice, ontology of mathematics, mathematical object, dialectics, категории, практика, онтология математики, математический объект

Authors

NameOrganizationE-mail
Bukin Dmitriy N.Volgograd State Universityhetfieldukin@mail.ru
Всего: 1

References

Мулуд Н. Современный структурализм. М. : Прогресс, 1973. 375 с.
Kitcher Ph. The nature of mathematical knowledge. New York ; Oxford : Oxford University Press, 1984. 287 p.
Бурова И.Н. Развитие проблемы бесконечности в истории науки. М. : Наука, 1987. 134 с.
Барабашев А.Г. Будущее математики: методологические аспекты прогнозирования. М. : Изд-во Моск. ун-та, 1991. 160 с.
Бурова И.Н. Парадоксы теории множеств и диалектика. М. : Наука, 1976. 176 с.
Целищев В.В. Семантика для пропозициональных установок и «твердые десигнаторы» // Логика и онтология. М. : Наука, 1978. С. 94-128.
Кудряшев А.Ф. Модальные онтологии в математике // Стили в математике. М. : РХГИ, 1999. С. 130-138.
Левин Г.Д. Философские категории в современном дискурсе. М. : Логос, 2007. 224 с.
Kripke S. Naming and Necessity. Cambridge : Harvard University Press, 1980. 172 p.
Книгин А.Н. Учение о категориях. Томск : Изд-во ТГУ, 2002. 193 с.
Джахая Л.Г. К вопросу о методах изложения (способах развертывания) системы философских категорий // Философия и общество. 2003. № 2 (31). С. 107-128.
Миронов В.В., Иванов А.В. Онтология и теория познания. М. : Гардарики, 2005. 447 с.
Бранский В.П. Философское значение «проблемы наглядности» в современной физике. Л. : Изд-во Ленингр. ун-та, 1962. 191 с.
Перминов В.Я. Априорность и реальность исходных представлений математики // Вестн. Моск. ун-та. Сер. 7. Философия. 2010. № 4. С. 24-44.
Фреге Г. Основоположения арифметики / пер. В.А. Суровцева. Томск : Водолей, 2000. 64 с.
Гадамер Х.-Г. Истина и метод: основы философской герменевтики / пер. М.А. Журинская, С.Н. Земляной, А.А. Рыбаков, И.Н. Бурова; под ред. Б.Н. Бессонова. М. : Прогресс, 1988. 704 с.
Асмус В.Ф. Проблема интуиции в философии и математике (Очерк истории: XVII - начало XX в.). М. : Мысль, 1965. 312 с.
Автономова Н.С. Рассудок, разум, рациональность. М. : Наука, 1988. 287 с.
Гуссерль Э. Начало геометрии. Введение Жака Деррида / пер. и послесл. М. Маяцкого. М. : Ad Marginem, 1996. 267 с.
Курант Р., Роббинс Г. Что такое математика? / под ред. А.Н. Колмогорова. М. : МЦНМО, 2004. 568 с.
Целищев В.В. Онтология математики: объекты и структуры. Новосибирск : Нонпарель, 2003. 240 с.
Ружа И. Основания математики / пер. М.М. Беловой, В.И. Костенко. Киев : Вища школа, 1981. 350 с.
Касавин И.Т. Конструктивизм как идея и направление // Конструктивизм в теории познания. М. : ИФРАН, 2008. С. 63-72.
 On interrelation of mathematical knowledge and objective reality | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2012. № 356.

On interrelation of mathematical knowledge and objective reality | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2012. № 356.

Download file