The study of photo-polymerization kinetics of methylmethacrylate initiated by the quantum dots of cadmium sulfide | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2013. № 375. DOI: 10.17223/15617793/375/41

The study of photo-polymerization kinetics of methylmethacrylate initiated by the quantum dots of cadmium sulfide

Media containing quantum dots (QDots) of semiconductor AIIBVI groups are unique materials whose optical properties depend on the size and shape of the nanoparticles. QDots of such materials are widely used: fluorescent labels, bio and chemical sensors, luminescent solar concentrators, layers of active elements of solar cells and other practical interest composites consisting of acrylic polymers and QDots. A promising approach is the synthesis of quantum dots directly into the environment and following polymerization of the monomer in the block composites. Under photopolymerization of CdS / MMA the size and properties of QDots change. Nanoparticles affect the polymerization process, too. To create composites of CdS / PMMA QDots with desired properties it is important to know the mechanisms of the processes occurring during the synthesis and to be able to manage them. In this paper we study the effect of size, particle concentration and irradiation parameters on the kinetics of photopolymerization medium. The dynamics of changes in the size and properties of CdS nanoparticles with different concentrations and ratios of precursor components under photopolymerization of CdS / MMA colloids were investigated. To study the changes in the characteristics of nanoparticles in colloidal solutions of CdS / MMA and mechanisms of the photopolymerization process, three samples were synthesized with different average particle size. To do this, at a fixed concentration of the precursor (CF3COO)2Cd we varied the concentration of the precipitant H2S. During the experiment at different doses of colloidal solutions of QDots of CdS / MMA, the conversion of MMA in PMMA, the concentration and size of nanoparticles were determined and the absorption spectra were recorded. Investigation of the processes occurring during irradiation of colloidal solutions of QDots of CdS / MMA made it possible to establish the following regularities and draw conclusions: l. At the initial stage of irradiation (20 minutes) the rate of polymer formation is low (induction phase). During this time the CdS particles effectively absorb a considerable amount of photons, which leads to the generation of electrons (e) and holes (h+) on their surface. At the same time, the charge stock from the particles to MMA and the recombination of electrons and holes are small, which leads to thermodynamic instability. In the medium the processes of photocorrosion and photodegradation occur efficiently, which reduces the average size and increases the number of particles per volume unit. 2. The speed of photopolymerization under irradiation of colloidal solutions of QDots of CdS / MMA does not correlate with the number of particles, but with the surface area of cadmium sulfide nanoparticles in the monomer. 3. The features of photopolymerization flow and dimensional change of QDots under irradiation of different samples of colloidal solutions of QDots of CdS / MMA are connected with the amount and nature of nanoparticle defects (depending on the ratio of sulfur / cadmium used in the synthesis of nanoparticles). The results will be used in the synthesis of polymeric composite materials for multilayer luminescent solar concentrators (LSC) and other fluorescent optical converters.

Download file
Counter downloads: 157

Keywords

фотополимеризация, кинетика, квантовые точки, сульфид кадмия, полиметилметакрилат, photopolymerization, kinetics, quantum dots, cadmium sulfide, polymethyl methacrylate

Authors

NameOrganizationE-mail
Biryukov Aleksandr A.Tomsk State Universityabba1983@mail.ru
Gotovtseva Yekaterina Yu.Tomsk State Universitykara4578@mail.ru
Izaak Tatiana I.Tomsk State Universitytaina_i@mail.ru
Svetlichnyi Valeriy A.Tomsk State Universityv_svetlichnyi@bk.ru
Всего: 4

References

Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications / ed. A.L. Rogach. New York ; Springer-Verlag : Wien,. 2008. 372 p.
Leatherdale C.A., Woo W.K., Mikulec F.V., Bawendi M.G. On the Absorption Cross Section of CdSe Nanocrystal Quantum Dots // J. Phys. Chem. B. 2002. Vol. 106, No. 31. P. 7619-7622.
Burda C., Chen X., Narayanan R., El-Sayed M.A. Chemistry and Properties of Nanocrystals of Different Shapes // Chem. Rev. 2005. Vol. 105. No. 4. P.1025-1102.
Bruchez Jr.M, Moronne M, Gin P. et al. Semiconductor Nanocrystals as Fluorescent Biological Labels // Science. 1998. Vol. 281. P. 2013-2016.
Олейников В.А, Суханова А.В., Набиев И.Р. Флуоресцентные полупроводниковые нанокристаллы в биологии и медицине // Российские нанотехнологии. 2007. № 1-2. С. 160-173.
Штыков С.Н., Русанова Т.Ю. Наноматериалы и нанотехнологии в химических и биохимических сенсорах: возможности и области примене ния // Российский химический журнал. 2008. Т. LII, № 2. С. 92-101.
Николенко Л.М., Разумов В.Ф. Коллоидные квантовые точки в солнечных элементах // Успехи химии. 2013. Т. 82, № 5. С. 429-448.
Singh V.P., Singh R.S., Thompson G.W. et al. Characteristics of nanocrystalline CdS films fabricated by sonochemical, microwave and solution growth methods for solar cell applications // Solar Energy Materials Solar Cells. 2004. Vol. 81, No. 3. P. 293-303.
Klimov V.I., Ivanov S.A., Nanda J. et al. Single-exciton optical gain in semiconductor nanocrystals // Nature. 2007. Vol. 447, No. 7143. P. 441-446.
Li H.P., Kam C.H., Lam Y.L., Ji. W Optical nonlinearities and photo-excited carrier lifetime in CdS at 532 nm // Optics. Communication. 2001. Vol. 190, No. 1-6. P. 351-356.
Sun Z.B., Dong X.Z., Chen W.Q. et al. Multicolor Polymer Nanocomposites: In Situ Synthesis and Fabrication of 3D Microstructures // Adv. Mater. 2008. Vol. 20. P. 914-919.
Murray C.B., Norris D.J., Bawendi M.G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites // J. Am. Chem. Soc. 1993. Vol. 115. Р. 8706-8715.
Pedone E., Caponetti, Leone M. et al. Synthesis and characterization of CdS nanoparticles embedded in a polymethylmethacrylate matrix // Journal of Colloid and Interface Science. 2005. Vol. 284. P. 495-500.
Бирюков А.А., Изаак Т.И., Светличный В.А., Бабкина О.В. Методика синтеза и оптические свойства нанокомпозитов CdS-полиметилметакрилат // Известия вузов. Физика. 2006. № 12. C. 81-85.
Бирюков А.А., Изаак Т.И., Готовцева Е.Ю. и др. Оптические свойства дисперсий CdS/ММА и нанокомпозитов CdS/ПММА, полученных при одностадийном размероконтролируемом синтезе // Известия вузов. Физика. 2010. № 8. C. 74-80.
Энциклопедия полимеров. М. : Сов. энцикл., 1972. Т. 1. 1224 с.
Хайрутдинов Р.Ф. Химия полупроводниковых наночастиц // Успехи химии. 1998. Вып. 2. С. 125-139.
Yu W.W., Qu L, Guo W., Peng X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals // Chem. Mater. 2003. Vol. 15. P. 2854-2860.
Prashant V. Kamat, Flumiani M, Gregory V. Hartland Picosecond Dynamics of Silver Nanoclusters. Photoejection of Electrons and Fragmentation // J. Phys. Chem. B. 1998. Vol. 102, No. 17. P. 3123-3128.
Stroyuk A.L, Granchak V.M., Korzhak A. V., Kuchmii S. Ya. Photoinitiation of buthylmethacrylate polymerization by colloidal semiconductor nanoparticles // Journal of Photochemistry and Photobiology A: Chemistry. 2004. Vol. 162, No. 2-3. P. 339-351.
Singh V., Chauhan P. Structural and optical characterization of CdS nanoparticles prepared by chemical precipitation method // Journal of Physics and Chemistry of Solids. 2009. Vol. 70, No. 7. P. 1074-1079.
 The study of photo-polymerization kinetics of methylmethacrylate initiated by the quantum dots of cadmium sulfide | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2013. № 375. DOI: 10.17223/15617793/375/41

The study of photo-polymerization kinetics of methylmethacrylate initiated by the quantum dots of cadmium sulfide | Vestnik Tomskogo gosudarstvennogo universiteta – Tomsk State University Journal. 2013. № 375. DOI: 10.17223/15617793/375/41

Download file