Вермикомпост на основе листового опада - перспективное кальциевое удобрение | Вестник Томского государственного университета. Биология. 2015. № 2 (30).

Вермикомпост на основе листового опада - перспективное кальциевое удобрение

Установлено наличие специфических свойств вермикомпоста, полученного путём переработки листового опада культурой Eisenia fetida. В вермикомпосте, полученном из конского навоза, суммарное содержание катионов Ca + и K+ составило в среднем '30 мг-экв / кг сухого веса. Сумма растворимых форм кальция и калия в вермикомпостах на основе листового опада характеризовалась статистически значимым снижением содержания в ряду: тополиный опад-ивовый опад-березовый опад и составила ''3, '06 и 93 мг-экв/кг соответственно. Содержание нитрат-иона в вермикомпосте на основе конского навоза, на основе тополиного, ивового и березового опада зафиксировано на уровне 87, 22, '8 и '4 мг-экв/кг соответственно. Кратность количественного отношения Ca +/K+ в вермикомпосте из конского навоза равнялась 3,5. В образцах вермикомпоста, полученного из березового, ивового и тополиного опада, этот показатель значимо возрастал и достигал значений 4,'; 4,7 и 5,7 соответственно. Выращивание изолированных ростков картофеля сорта Невский на вытяжках из вермикомпоста на основе тополиного опада приводило к статистически значимому увеличению веса образовавшихся корней по сравнению с ростками, выращиваемыми на вытяжках вермикомпоста, полученного из конского навоза.

Leaf litter-based vermicompost as promising calcium fertilizer.pdf Введение Вермикультивирование - выращивание дождевых червей на органических субстратах - широко распространено в различных странах как прогрессивная технология переработки органических остатков, получения высокоэффективного удобрения и кормового белка животного происхождения [1, 2]. Вермикомпост, полученный из различных бытовых и сельскохозяйственных отходов, служит хорошим удобрением и стимулятором роста www.journal.tsu/biology различных культур [3, 4]. В ряде случаев из копролитов дождевых червей выделяют специфические штаммы микроорганизмов, которые используют для высокоэффективной защитной бактеризации зерновых культур [5]. В настоящее время в России и за рубежом в качестве основного субстрата для вермикультуры чаще всего используется навоз разных видов сельскохозяйственных животных и птицы [6-8]. Компост на основе навоза, как правило, содержит достаточно большие количества неорганического азота и калия [9]. Использование вермикомпоста с высоким содержанием ионов NO3- и K+ в качестве удобрения способствует усиленному вегетативному росту растений и повышению урожайности. Однако в практическом земледелии повышенный азотный фон пролонгирует фазу вегетативного роста и препятствует формированию и созреванию плодов, клубней, корнеплодов [10], что в условиях короткого вегетационного периода может привести к существенному снижению урожая. Переизбыток калия, увеличивая обводненность тканей [11], способствует более быстрому распространению возбудителей различных болезней. С другой стороны, хорошо известна важная роль кальция как элемента минерального питания, повышающего устойчивость растений к стрессам и болезням [12, 13]. В вермикомпостах, полученных на основе богатых азотсодержащей органикой субстратов, соотношение ионов кальция и калия, как правило, характеризуется преобладанием последнего [9], в то время как в большинстве естественных пищевых субстратов дождевых червей, в том числе в листовом опаде, наблюдается обратная картина [14-18]. В последние годы все большее внимание уделяется изучению процессов разложения листового опада как одного из важнейших звеньев биогеохимических циклов [19, 20]. Но эти же процессы можно реализовать и в искусственных условиях как одну из технологических задач вермикомпостирования, которая имеет, как минимум, два важных аспекта. Во-первых, часто практикующееся в настоящее время сжигание опавших листьев является нерациональным, вредным для окружающей среды мероприятием. В то же время листовой опад представляет собой почти бесплатный, легкодоступный субстрат для переработки. Во-вторых, вермикомпостирование листового опада позволяет получить образцы вермикомпоста, обогащенного кальциевыми соединениями. По нашему мнению, использование данного биотехнологического продукта в качестве органоминерального удобрения (в определенные периоды онтогенеза) будет оказывать положительное влияние на корнеобразование и формирование неспецифической устойчивости растительного организма. Цель работы - исследование некоторых агрохимических свойств верми-компоста, при производстве которого в качестве основного пищевого субстрата использовался листовой опад определенных видов древесных растений. Материалы и методики исследования В экспериментах использовался компостный червь Eisenia fetida Savigny (Lumbricidae), наиболее технологичный и приспособленный для вермиком-постирования вид. Вермикультура Eisenia fetida поддерживается на кафедре защиты растений профессором А.С. Бабенко. Исходная популяция червей получена от Ю.Б. Морева (Институт биологии АН Киргизской ССР) в 1991 г. Для вермикультивирования использовали пластиковые контейнеры объемом 250 мл, которые наполняли субстратом. Кроме субстрата, в каждый контейнер помещали по несколько неполовозрелых особей дождевых червей общим весом 1,5±0,1 г. В качестве субстрата вермикультивирования использовали смесь верхового торфа как поглотительного материала, конского навоза или одного из трех видов высушенного листового опада: березового (Betula pendula L.), тополиного (Populus nigra L.) и ивового (Salix alba L.). Выбор данных видов древесных растений обусловлен их массовым совместным произрастанием на открытой территории Сибирского Ботанического сада и на ООПТ «Университетская роща» (г. Томск). Все вышеуказанные виды произрастают в одинаковых почвенно-климатических условиях. Следовательно, все возможные различия в физико-химических свойствах листового опада для этих трёх видов можно рассматривать как генетически детерминированные [21]. Исходные субстраты взяты в соотношении 1:8 по воздушно-сухому весу: 4 г сухого пищевого компонента (навоз или один из трех видов опада) и 32 г торфа. Дистиллированная вода добавлялась в сухую смесь в количестве 120 мл. Таким образом, начальная рабочая влажность субстратов вермиком-постирования составила 77%. В дальнейшем влажность субстратов поддерживалась на уровне 70±10% путем регулярного добавления дистиллированной воды. Закрытые перфорированными крышками контейнеры находились в темной комнате при температуре +21±3°C. Вермикомпостирование проводилось до завершения фазы прироста биомассы червей и проявления выраженной тенденции к снижению данного параметра. В наших экспериментах (с ограниченным объемом контейнеров и пищевых ресурсов) это происходило в среднем к 21-м суткам культивирования червей. По завершении экспериментов отсеянный от червей вермикомпост высушивался в сушильном шкафу при температуре 105°C . Все эксперименты по культивированию червей Eisenia fetida на навозе и листовом опаде от разных видов древесных растений проводили в 5 повторностях. Для приготовления экстрактов из полученных вермикомпостов брали пробы с воздушно-сухим весом 5 г и заливали 95 мл дистиллированной воды (разведение 1:20). Пробы с водой количественно переносили в сосуды из темного стекла объемом 100 мл, закрывали крышкой, перемешивали в течение 3 мин на магнитной мешалке и оставляли на сутки в помещении при комнатной температуре для окончательной экстракции. Экстракт фильтровали и производили измерения требуемых физико-химических параметров. Концентрацию ионов калия и нитрат-ионов в экстрактах из верми-компостов определяли посредством ионометрии. Измерения проводили на иономере ИПЛ-103 серии «Мультитест» (Россия). Электродная ячейка включала в себя ионоселективный электрод «ЭЛИС»-121К или «ЭЛИС»-121NO3 и электрод сравнения ЭВЛ-1 М3.1. Содержание ионов Ca2+ в исследуемых экстрактах определяли комплексонометрическим методом. Физиологическое воздействие полученных образцов вермикомпоста изучалось на изолированных ростках картофеля (Solanum tuberozum L.) распространенного в России сорта Невский (Всеволожская селекционная станция). В чашки Петри на дно укладывали фильтровальную бумагу. В каждую чашку помещали по 3 ростка весом 0,5-1 г. Фильтровальная бумага на дне чашек смачивалась питательными растворами, в качестве которых служили водные вытяжки (1:20) из высушенных образцов вермикомпоста на основе навоза и тополиного опада. Экстракцию проводили способом, описанным выше. Чашки Петри с культивируемыми ростками картофеля помещались в малогабаритную фитокамеру со светопериодом день / ночь, равным 16:8. Продолжительность культивирования ростков определялась временем формирования развитой корневой системы и в среднем составляла 3-5 сут. Всего проведено 5 повторностей данного эксперимента. Отношение сырого веса образовавшихся за фиксированное время корней к общему сырому весу ростка, выраженное в процентах, служило главным исследуемым показателем воздействия питательных сред на изолированные ростки. В дальнейшем этот показатель мы называем «относительный вес корней». Методы статистической обработки результатов выбирали исходя из малого объема выборок и невозможности, в силу данного обстоятельства, надежной оценки распределений. В качестве средних показателей использовали медианы, для оценки вариации вычисляли 25-75%-ные перцентили (1-й и 3-й квартили). Статистическую значимость отличий медиан исследуемых совокупностей рассчитывали, используя непараметрический критерий Вилкокcона-Манна-Уитни [22]. Вычисления производили в свободно распространяемом табличном процессоре Gnumeric, версия 1.10.16. Результаты исследования и обсуждение Процессы онтогенетического изменения статуса минерального питания у высших растений - гликофитов - в настоящее время хорошо изучены [23, 24]. Одна из генеральных тенденций заключается в том, что листья (как древесных, так и травянистых растений) в ходе онтогенеза постепенно теряют калий (в результате оттока к более молодым органам и последующей реутилизации), но все больше и больше накапливают кальций. В стареющих и отмирающих листьях этот макроэлемент фиксируется в виде оксалатов и других слаборастворимых соединений, однако определенное количество кальция в тканях опада также присутствует и в форме иона наряду с ионами калия и нитрат-ионами. На рис. 1 представлены данные о суммарном содержании катионов кальция и калия и содержании нитрат-иона в пробах вермикомпоста, полученного из различных исходных субстратов. 1105,771 *# lliL щщ *# -И- 87,18 22,21 18,02 |13,99 2 3 4 Исходный субстрат для вермикомпостирования Рис. 1. Распределение суммы ионов кальция и калия, а также нитрат-ионов по образцам вермикомпоста, полученного из разных исходных субстратов. Здесь и на рис. 2, 3: 1 - вермикомпост на основе конского навоза; 2, 3, 4 -на основе тополиного, березового и ивового опада соответственно; * - статистически значимые отличия от выборки № 1 (p < 0,005); # - статистически значимые отличия от предыдущей (слева направо) выборки (p < 0,005); маркеры средних точек обозначают медиану, планки погрешностей - первый и третий квартили. [Fig. 1. Distribution of the amount of calcium and potassium ions, and nitrate ions according to vermicompost samples obtained from different initial substrates. Note: 1 - horse manure-based vermicompost, 2-4 - poplar, birch or willow litter-based, respectively; * - statistically significant differences from sample 1 (p

Ключевые слова

вермикомпостирование, Eisenia fetida, Populus nigra L, отношение Ca +/K+, Solanum tuberosum L, корнеобразование, vermicomposting, Eisenia fetida, Populus nigra L, Ca +/K+ ratio, Solanum tuberosum L, root formation

Авторы

ФИООрганизацияДополнительноE-mail
Петроченко Ксения АлександровнаТомский государственный университетаспирант кафедры защиты растений Биологического институтаcharlie9008@yandex.ru
Куровский Александр ВасильевичТомский государственный университет; Томский политехнический университетканд. биол. наук, доцент кафедры экологической и сельскохозяйственной биотехнологии Биологического института; доцент кафедры иностранных языков Физико-технического институтаa.kurovskii@yandex.ru
Бабенко Андрей СергеевичТомский государственный университетд-р биол. наук, профессор, зав. кафедрой защиты растений Биологического институтаandrey.babenko.56@mail.ru
Якимов Юрий ЕвгеньевичТомский государственный университетст. преподаватель кафедры экологической и сельскохозяйственной биотехнологии Биологического институтаyak4103@yandex.ru
Всего: 4

Ссылки

Edwards C.A., Burrows I., Fletcher K.E., Jones B.A. The use of earthworms for composting farm wastes // Composting Agricultural and Other Wastes / Ed. by J.K.R. Gasser. London ; New York : Elsevier, 1985. P. 229-241.
Hartenstein R., BisesiM.S. Use of earthworm biotechnology for the management of effluents from intensively housed livestock // Outlook on Agriculture. 1989. Vol. 18. P. 3-7.
Arancon N., Edwards C., Babenko A., Cannon J., Galvis P., Metzger J. Influences of vermicompost produced by earthworms and micro-organisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse // Applied Soil Ecology. 2008. Vol. 39. P. 91-99.
Atiyeh R.M., Subler S., Edwards C.A., Bachman G., Metzger J.D., Shuster W. Effects of vermicomposts and composts on plant growth in horticultural container media and soil // Pedobiologia. 2000. Vol. 44. P. 579-590.
Терещенко Н.Н., Кравец А.В., Акимова Е.Е., Минаева О.М., Зотикова А.П. Эффективность применения микроорганизмов, изолированных из копролитов дождевых червей, для увеличения урожайности зерновых культур // Сибирский вестник сельскохозяйственной науки. 2013. № 5. С. 10-17.
Морев Ю.Б. Искусственное разведение дождевых червей. Фрунзе : Илим, 1990. 63 с.
Городний Н.М., Мельник И.А., Повхан М.Ф. Биоконверсия органических отходов в биодинамическом хозяйстве. Киев : Урожай, 1990. С. 111-164.
Chan P.L.S., Griffiths D.A. The vermicomposting of pre-treated pig manure // Biological Wastes. 1988. Vol. 24. P. 57-69.
AtiyehR.M., EdwardsC.A., SublerS., Metzger J.D. Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth // Bioresource Technology. 2001. P. 11-20.
Койка С.А., СкориковВ.Т. Нитраты и нитриты в продукции растениеводства // Вестник Российского университета дружбы народов. Сер. Агрономия и животноводство. 2008. № 3. С. 58-63.
Hsiao T.C., Lauchli A. Role of potassium in plant-water relations // Advances in Plant Nutrition. / еds. by B. Tinker and A. Lauchli. N.Y. : Praeger Scientific, 1986. Vol. 2. P. 281312.
Bressan Ray A., Hasegawa Paul M., Pardo Jose M. Plants use calcium to resolve salt stress // Trends in Plant Science. 1998. Vol. 3. P. 411-412.
Poovaiah B.W., ReddyA.S.N. Calcium and Signal Transduction in Plants // Critical Reviews in Plant Sciences. 1993. Vol. 12. P. 185-185.
Sariyildiz T., Anderson J.M. Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types // Forest Ecology and Management. 2005. P. 303-319.
Lemma B., Nilsson I., Kleja D.B., Olsson M., Knicker H. Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia // Soil Biology & Biochemistry. 2007. P. 2317-2328.
Carnol M., BazgirM. Nutrient return to the forest floor through litter and throughfall under 7 forest species after conversion from Norway spruce // Forest Ecology and Management. 2013. P. 66-75.
Ma Y., Filley T.R., Szlavecz K., McCormick M.K. Controls on wood and leaf litter incorporation into soil fractions in forests at different successional stages // Soil Biology & Biochemistry. 2014. Vol. 69. P. 212-222.
Cizungu L., Staelens J., HuygensD., Walangululu J., MuhindoD., Cleemput O.V., BoeckxP. Litterfall and leaf litter decomposition in a central African tropical mountain forest and Eucalyptus plantation // Forest Ecology and Management. 2014. Vol. 326. P. 109-116.
Li T., Ye Y. Dynamics of decomposition and nutrient release of leaf litter in Kandelia obovata mangrove forests with different ages in Jiulongjiang Estuary, China // Ecological Engineering. 2014. Vol. 73. P. 454-460.
Cuchiettia A., Marcotti E., Gurvich D.E., Cingolani A.M., PerezHarguindeguy N. Leaf litter mixtures and neighbor effects: Low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours // Applied Soil Ecology. 2014. Vol. 82. P. 44-51.
Климашевский Э.Л. Генетический аспект минерального питания растений. М. : Агропромиздат, 1991. 415 с.
Гублер Е.В., Генкин А.А. Применение непараметрических критериев статистики в медико-биологических исследованиях. Л. : Медицина, 1973. 141 с.
Осмоловская Н.Г., Кучаева Л.Н., Новак В.А. Роль органических кислот при формировании ионного состава листьев гликофитов в онтогенезе // Физиология растений. 2007. Т. 54, № 3. С. 381-388.
Осмоловская Н.Г. Особенности ионного гомеостатирования у гликофитных растений // Вестник СПбГУ 1998. Сер. 3, вып. 2, № 10. С. 78-84.
Petrochenko K., Kurovskiy A., Babenko A. Ionic homeostasis and some other features of Eisenia fetida (Oligocheta) cultivated on substrates of various characters and of different chemical composition // Advances in Earthworm Taxonomy VI (Annelida: Oligochaeta). Kasparek Verlag, Heidelberg: Printed in Germany, 2014. P. 171-176.
Лархер В. Экология растений. М. : Мир, 1978. 384 с.
Куровский А.В. Эколого-физиологические аспекты кальциефильности травянистых растений // Вестник Томского государственного университета. 2009. № 329. С. 237240.
Якимов Ю.Е., Елисеева М.А., Куровский А.В. Эффективность размножения семенного картофеля частями клубня // Сборник трудов региональной научно-практической конференции «Современные проблемы и достижения аграрной науки в животноводстве, растениеводстве и экономике», Томск, 2010. Вып. 12. С. 92-96.
Schiefelbein J.W., Shipley A., Rowse P. Calcium influx at the tip of growing root-hair cells of Arabidopsis thaliana // Planta. 1992. P. 455-459.
Ponge J.F., Patzel N., Delhaye L., Devigne E., Levieux C., Beros P., Wittebroodt R. Interactions between earthworms, litter and trees in an old-growth beech forest // Biology and Fertility of Soils. 1999. P. 360-370.
Reich P.B., Oleksyn J., Modrzynski J., Mrozinski P., Hobbie S.E., Eissenstat D.M., Cho-Rover J., Chadwick O.A., Hale C.M., Tjoelker M.G. Linking litter calcium, earth-worms and soil properties: a common garden test with 14 tree species. // Ecology. 2005. Letters 8. P. 811-818.
Canti M.G., Piearce T.G. Morphology and dynamics of calcium carbonate granules produced by different earthworm species // Pedobiologia. 2002. P. 511-521.
Петроченко К.А., Куровский А.В., Бабенко А.С. Некоторые физико-химические аспекты переработки листового опада дождевыми червями Eisenia fetida в лабораторных условиях // Биогеоценология и ландшафтная экология: итоги и перспективы : материалы IV Международной конференции, посвященной памяти Ю.А. Львова. Томск, 2012. С. 401-404.
 Вермикомпост на основе листового опада - перспективное кальциевое удобрение | Вестник Томского государственного университета. Биология. 2015. № 2 (30).

Вермикомпост на основе листового опада - перспективное кальциевое удобрение | Вестник Томского государственного университета. Биология. 2015. № 2 (30).