Сравнение рельефных моделей в целях повышения качества почвенного картирования в масштабах поля | Вестник Томского государственного университета. Биология. 2016. № 4 (36). DOI: 10.17223/19988591/36/2

Сравнение рельефных моделей в целях повышения качества почвенного картирования в масштабах поля

Экологические, экономические и сельскохозяйственные выгоды точной интерполяции пространственного распределения почвенных свойств не вызывают сомнения. В данной работе представлен анализ и сравнение различных подходов построения дрифт-моделей при применении регрессионного кригинга для оценки пространственной изменчивости содержания гумуса и физической глины в верхнем горизонте почвы. Отбор почвенных образцов произведен согласно схеме, применяемой при агрохимическом обследовании с/х полей: на территории поля выделялось 60 секций, в каждой из которых ручным буром отобрано 12-15 почвенных образцов с глубины 10-20 см для получения смешанной пробы. Для пространственного прогноза распределения гумуса и физической глины использовались три рельефные модели: регрессия на главные компоненты, частные наименьшие квадраты и модель randomForest. Оценка точности интерполяции произведена с помощью перекрестной проверки, по результатам который вычислены: средняя ошибка (mean error, ME), среднеквадратичная ошибка (root mean square error, RMSE), среднеквадратичная стандартизированная ошибка (root mean square standardized error, RMSSE) и соотношение наблюдаемой и прогнозируемой дисперсий (RVar). Согласно полученным результатам, метод ординарного кригинга превосходит остальные при наличии сильной пространственной зависимости исследуемого параметра. Во всех остальных случаях подход с применением PLS модели имеет наибольшую точность пространственного прогноза.

Comparison of terrain-based drift models to improve the quality of soil predictive mapping at a field scale.pdf Introduction Spatial variability of soil properties is an important indicator of soil quality, and it is important in ecological modeling, environmental prediction, precision agriculture, and natural resource management [1]. Revealing the characteristics of spatial patterns will provide the basis for evaluating soil fertility, and assist in the development of sound agricultural management policies. So, there is a need for adequate information about spatio-temporal behavior of soil properties over a region and accurate interpolation at unsampled locations is needed for better planning and management. In general, there are two major approaches to predict soil properties at unsampled location. Methods of "classic" statistics use linear and non-linear regression models to predict dependent variable using auxiliary data. Remote sensing data, topographic and morphologic attributes, climate, land-use and geology are auxiliary parameters commonly used for the calibration of predictive models. For example, Rodriquez-Lado and Martinez-Cortizas used multiple linear regression, e.g. principal component regression and partial least squares, for modeling and mapping organic carbon content of topsoil using climatic and geological data as independent variables [2]. The second approach is geostatistics, which has been rapidly developing for last decades [3; 4]. Geostatistics is an efficient method for studying spatial allocation of soil characteristics and their inconsistency and reducing the variance of assessment error and execution costs [5]. Geostatistical methods model the local uncertainty about the attribute value at any particular location through the set of possible realizations of the random variable at that location [6]. Earlier researchers, who applied geospatial techniques to evaluate geographical changeability of soil characteristics, reported that ordinary kriging in most cases was the best method for prediction of the spatial distribution of soil properties [7; 8]. And there is the third, hybrid approach that uses advantages of the first two. And the typical example is regression kriging (RK) that uses regression models to explain deterministic part of spatial variation using auxiliary data and kriging technique to interpolate the residuary, stochastic part of spatial variation. In RK, the deterministic part can be explained using various statistical techniques. Many authors suggest the relative accuracy advantage of the RK compared to OK, and this prediction performance depends on the relationship between the target variable and the explanatory co-variables [9; 10]. The present study was undertaken to compare the accuracy of various approaches to model the deterministic part of regression kriging. Materials and methods 2.1. Study area and sampling design The study was carried out in the national crop testing field (CTF) that is located in the southeastern part of the Republic of Tatarstan (Russian Federation, 55°05'56.0"N 52°02'24.0"E). The relief of the field is flat in the northern part and changes to the gentle slope in the southern and south-eastern parts. The soil cover is represented by leached, silt loamy chernozems with varying rates of erosion. The most eroded chernozem is located in the eastern and south-eastern parts of the field. The soft eroded soils are located in the northern part of the CTF. Parent rocks are represented by fine loamy and clayey calcareous deluvium, underlined by the ancient alluvial deposits in the eastern part. Particle size distribution, according to the Russian classification by NA Kachinsky, is fine loamy [11]. The soil sampling was performed according to an agrochemical sampling design: the field was divided into 60 sections; within each section 12-15 sampling points were taken using a hand auger at the depth of 10-20 cm to produce one mixed sample (Fig. 1). For geostatistical analysis the mixed samples were georeferenced into centers of the corresponding sections. The following soil properties were measured: humus content by the Tyurin method and the particle size distribution by the Kachinsky-Robinson-Kehl pipet method [12]. As an indicator of the particle size distribution, the sum of particles

Ключевые слова

physical clay, humus, regression kriging, prediction, geostatistics, spatial interpolation, физическая глина, гумус, регрессионный кригинг, геостатистика, прогнозирование, пространственная интерполяция

Авторы

ФИООрганизацияДополнительноE-mail
Рязанов Станислав СергеевичИнститут проблем экологии и недропользования АН РТнаучный сотрудник лаборатории экологии почвerydit@yandex.ru
Сахабиев Ильназ АлимовичИнститут проблем экологии и недропользования АН РТнаучный сотрудник лаборатории экологии почвilnassoil@yandex.ru
Всего: 2

Ссылки

Mevik B.-H., Wehrens R., Liland K.H. Partial Least Squares and Principal Component Regression. R package version 2.5-0.; 2015. [Electronic resource]. Available at: https:// cran.r-project.org/web/packages/pls/index.html (accessed 05.10.2016)
Liaw A., Wiener M. Classification and Regression by random Forest. R News. 2002;2(3):18-22.
Cambardella C., Moorman T., Novak J., Parkin T., Karlen D., Turco R., Konopka A. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994;58:1501-1511. doi: 10.2136/sssaj1994.03615995005800050033x
Li J., Heap A.D. A Review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23. 137 p.
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. [Electronic resource]. Available at: http:// www.R-project.org/ (accessed 05.10.2016)
James G., Witten D., Hastie T., Tibshirani R. An introduction to statistical learning with applications in R. New York: Springer-Verlag; 2013. 440 p. doi: 10.1007/978-1-4614-7138-7
Mevik B., Wehrens R. The pls package: principal component and partial least squares regression in R. Journal of Statistical Software. 2007;18:2:1-23. doi: 10.18637/jss.v018.i02
Breiman L. Random Forests. Machine Learning. 2001;45:5-32. doi: 10.1023/A:1010933404324
McBratney A., Odeh I., Bishop T., Dunbar M., Shatar T. An overview of pedometric techniques of use in soil survey. Geoderma. 2000;97:293-327. doi: 10.1016/S0016-7061(00)00043-4
Hengl T., Heuvelink G., Stein A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma. 2004;120:75-93. doi: 10.1016/j. geoderma.2003.08.018
Odeh I., McBratney A., Chittleborough D. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma. 1994;63:197-214. doi: 10.1016/0016-7061(94)90063-9
Odeh I., McBratney A., Chittleborough D. Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma. 1995;67:215-226. doi: 10.1016/0016-7061(95)00007-B
Robinson T.P., Metternicht G. Comparing the performance of techniques to improve the quality ofyield maps. Agricultural Systems. 2005;85:19-41. doi: 10.1016/j.agsy.2004.07.010
Hengl T. A Practical Guide to Geostatistical Mapping. Amsterdam: University of Amsterdam Publ.; 2009. 293 p.
Webster R, Oliver M. Geostatistics for Environmental Scientists. Chichester: John Wiley & Sons, Ltd; 2001. 271 p.
Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Boehner J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015;8:1991-2007. doi: 10.5194/gmd-8-1991-2015
Miller B.A., Koszinski S., Wehrhan M., Sommer M. Impact of multi-scale predictor selection for modeling soil properties. Geoderma. 2015:239-240:97-106. doi: 10.1016/j. geoderma.2014.09.018
Li J, Heap A. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance an impact factor. Ecological Informatics. 2011;6(3-4):228-241. doi: 10.1016/j.ecoinf.2010.12.003
Shein E.V. Kurs fiziki pochv [Soil physics]. Moscow: Moscow State University Publ.; 2005. 432 p. In Russian
Yagodin B.A., Deryugin I.P., Zhukov Yu.P., Demin V.A, Peterburgskiy A.V., Kidin V.V., Slipchik A.F., Kulyukin A.I., Sablina S.M. Praktikum po agrokhimii [Manual on agrochemistry]. Moscow: Agropromizdat Publ.; 1987. 512 p. In Russian
Gouri S.B., Pravat K., Ramkrishna M. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal ofthe Saudi Society of Agricultural Sciences. 2016. In press. doi: 10.1016/j.jssas.2016.02.001
Zhang S, Huang Y, Shen C, Ye H, Du Y. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma. 2012;171-172:35-43. doi: 10.1016/j.geoderma.2011.07.012
Behera S.K., Shukla A.K. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. LandDegrad. Develop. 2015;26:71-79. doi: 10.1002/ldr.2306
Goovaerts P. Geostatistics for Natural Resources Evaluation (Applied Geostatistics). New York: Oxford University Press; 1997. 497 p.
Zare-Mehrjardi M, Taghizadeh-Mehjardi R, Akbarzadeh A. Evaluation of geostatistical techniques for mapping spatial distribution of soil pH, salinity and plant cover affected by environmental factors in Southern Iran. NotSciBiol. 2010;2:92-103.
Rodriques-Lado L, Martinez-Cortizas A. Modelling and mapping organic carbon content of topsoil in an Atlantic area of southwestern Europe (Galicia, NW-Spain). Geoderma. 2015;245-246:65-73. doi: 10.1016/j.geoderma.2015.01.015
McBrantey A.B., Mendoca Santos M.L., Minasny B. On digital soil mapping. Geoderma. 2003;117:3-52. doi: 10.1016/s0016-7061(03)00223-4
Minasny B., McBratney A.B. Methodologies for global soil mapping. In: Digital Soil Mapping. Bridging Research, Environmental Application and Operation. Boettinger J.L., Howel D.W., Moore A.C., Hartemink A.E., Kienast-Brown S., editors. Dordrecht: Springer Netherlands; 2010. pp. 429-436. doi: 10.1007/978-90-481-8863-5
Wei J.B., Xiao D.N., Zeng H., Fu Y.K. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northern China. Environ Geol. 2008;53:1663-1672. doi: 10.1007/s00254-007-0773-z
 Сравнение рельефных моделей в целях повышения качества почвенного картирования в масштабах поля | Вестник Томского государственного университета. Биология. 2016. № 4 (36). DOI: 10.17223/19988591/36/2

Сравнение рельефных моделей в целях повышения качества почвенного картирования в масштабах поля | Вестник Томского государственного университета. Биология. 2016. № 4 (36). DOI: 10.17223/19988591/36/2