Микропластик в желудочно-кишечном тракте рыб: первые результаты, полученные для реки Томь в Западной Сибири, Россия | Вестник Томского государственного университета. Биология. 2020. № 52. DOI: 10.17223/19988591/52/7

Микропластик в желудочно-кишечном тракте рыб: первые результаты, полученные для реки Томь в Западной Сибири, Россия

В последние десятилетия пластиковый мусор был обнаружен в водных экосистемах по всему миру как следствие сбросов промышленных, бытовых отходов и выбросов сточных вод. Особенно интенсивно изучается загрязнение морской среды микропластиком (частицами <5 мм), так как проглатывание микропластика гидробионтами и его накопление в пищевых цепях обеспечивает пути передачи ассоциированных с ним загрязнителей и потенциально токсичных добавок от водных организмов к человеку с пока неопределенными последствиями для здоровья. Большинство исследований по распространению микропластика сосредоточено на морских организмах, гораздо меньше внимания уделяется обследованию речных гидробионтов. Присутствие и распространение микропластика в организмах рыб до настоящего времени не исследовано для рек России. В данной работе изучено содержание частиц микропластика в желудочно-кишечном тракте (ЖКТ) ельца (Leuciscus leuciscus L.) из реки Томь, крупного притока Оби в Западной Сибири. Всего было изучено 13 особей ельцов в возрасте от 2+ до 4+ лет. Частицы микропластика, извлеченные из ЖКТ рыб, были подсчитаны и классифицированы по форме и размеру. У 100% из обследованных тринадцати особей ельца, пойманных в апреле 2020 года, в желудочно-кишечном тракте обнаружены частицы микропластика. В среднем на особь ельца приходилось 204 ± 28.7 единиц микропластика. Микропластик, извлеченный из ельцов, был разнообразным по форме: встречены фрагменты нерегулярной формы, сферы, волокна и пленки. Фрагменты были наиболее многочисленной группой частиц и составляли 144 ± 10.2 единиц на особь или 70% от общего обнаруженного их числа. Оставшиеся 30% частиц микропластика были представлены сферами (16%), пленками (7%) и волокнами (7%). Содержание фрагментов микропластика в ЖКТ рыб было достоверно выше (P <0.01) по сравнению с частицами другой формы. Большинство обнаруженных частиц микропластика (162 ± 27.9 единиц на особь или почти 80%) имели размеры менее 0.15 мм по наибольшей оси. Содержание самых мелких (<0.15 мм) частиц микропластика в ЖКТ ельцов было достоверно выше (P <0.01) по сравнению с другими размерными группами. 20% обнаруженных частиц принадлежали к группе 0.15-2.00 мм, причем основную часть этих частиц составлял микропластик с размерами от 0.15 до 0.30 мм, затем следовали частицы 0.30-1.00 мм. Лишь один фрагмент, попадающий в группу 3.00-4.00 мм, был встречен в ЖКТ ельца. Не было зафиксировано ни одной частицы с размерами 2.00-3.00 или 4.00-5.00 мм. Полученные данные являются первым доказательством наличия микропластика в рыбах из речной системы Оби. Достоверных различий в содержании микропластика в желудочно-кишечном тракте рыб между группами самцов и самок, а также между разными возрастными группами, не выявлено. Для выявления подобных связей необходимо проведение долгосрочных и масштабных исследований.

Microplastics in fish gut, first records from the Tom River in West Siberia, Russia.pdf Introduction In recent decades, plastic debris have been found in aquatic ecosystems around the world as a direct consequence of industrial, consumer waste and wastewater emissions [1]. Pollution of the marine environment with microplastics (particles < 5 mm) is especially intensively studied. The number of studies analyzing the abundance of microplastics in the marine environment began to grow rapidly after 2004, when the seminal paper by Thompson et al. [2] had been published. Microplastics are currently defined as polymer particles smaller than 5 mm [3], or 1 mm [4] in the largest axis. Some authors also use the terms “large” and “small” for microplastics (2-5 mm and 0.5-2 mm, respectively) [5]. The adverse effects of plastics when swallowed by hydrobionts, suffocating or entangling them, have been documented for a variety of marine species, so these Microplastics in fish gut, first records 131 materials were found hazardous to marine fauna [6]. Since plastic breaks down into smaller pieces in an aquatic environment to form microplastics, it is believed that it can enter food chains [6-7]. Both field and laboratory studies suggest that fish absorb micro-sized plastic particles, e.g. originating from synthetic clothing and cleaning products containing plastic granules [7-8]. Ingestion of microplastics by hydrobionts and their accumulation in food chains provides a potential pathway for the transfer of other pollutants and potentially toxic additives to living organisms up to humans with uncertain consequences for their health [9-12]. Most studies on microplastics abundance have focused on marine organisms. Microscopic plastic particles have been detected in marine benthic organisms, especially in bivalves [7, 13-15]. Several reports describe microplastics in the gut of marine fish. Microplastics were detected in semipelagic fish bogue (Boops hoops L.) around the Balearic Islands [16]. Microplastic ingestion is documented in commercially relevant fish species from the Spanish Atlantic coast and Mediterranean Sea - Scyliorhinus canicula L., Merluccius merluccius L. and the Mullus barbatus L. [17-18]. Ingestion of anthropogenic microfibres and microfragments by the European anchovy (Engraulis encrasicolus L.) of the Mediterranean Sea has been recently studied [19]. Much less attention is paid to riverine fish. First evidence of microplastics ingestion by fish from the Amazon River was received not so long ago [20]. McNeish et al. [21] measured microplastic abundance in fish from three major tributaries of Lake Michigan, the Muskegon River, the Milwaukee River, and the St. Joseph River. The results obtained from these two and several other [22] studies suggested microplastic pollution is common in river food webs. The aim of this research is to assess the ingestion of microplastics by fish from the Tom River, a large tributary of the Ob River in West Siberia. It should be noted that the abundance of microplastics in fish of the Ob River system has not been studied to date, as well as in fish in other rivers of Russia. Materials and Methods The object of the study was common dace, (Leuciscus leuciscus L.) from the Tom River in Western Siberia, Russia. L. leuciscus is a widespread freshwater fish of Cyprinidae family [23]. Thirteen specimens of common dace were caught using a fishing rod on the right bank of the Tom River within the city of Tomsk (56°27'33''N, 84°56'056''E) on April 01, 2020. Fish were frozen, transported to the laboratory and stored at -20 °C before the laboratory analysis. Subsequently, each fish was defrosted and examined. The total length of the body (L) and the standard length (from the tip of the snout to the posterior end of the midlateral portion of the hypural plate, l) were measured using a caliper to the nearest 1 mm. Total weight (Q) and body weight without viscera (q) (wet weight, ±1 g) were determined using an electronic balance. Scales were taken in the region of the dorsal fin (10-15 pcs. in each Yu.A Frank, E.D. Vorobiev, I.B. Babkina et al 132 specimen). The fish age was determined by the number of annual rings on the fish scales using a dissecting microscope. The sex of the fish was determined visually by gonads as described by Pravdin [24]. The fish was dissected, the gastrointestinal tract (oesophagus, stomach, and intestine) was removed for further processing and stored at -20 °C until analysis according to the method published by Bellas et al. [17]. To extract microplastics from the gut, we used modified protocol developed by Claessens et al. [25] based on acid digestion of the soft tissues. The digestion procedure consisted of 12 h destruction of the fish guts in 25 mL of HNO3 (22.5 M) at room temperature, followed by 2 h of boiling in a water bath. Then the mixture was diluted to 100 mL with 26% NaCl solution for total salt concentration of 20% and left for additional 12 h for the density separation. After separation, the upper fraction was vacuum filtered using 0.45 цш mixed cellulose ester membrane filter (MF-Millipore). Filters were rinsed with 2% KOH solution for saponification of fats and inspected by light microscopy (stereomicroscope Micromed MC2) using digital camera and ToupView 3.7.6273 software. The abundance of microplastics of different shape and sizes was evaluated as the number of particles per fish specimen. The microplastics particles extracted from fish guts were classified into four groups by their shape [26]: spheres, films, fibers/lines, and fragments of irregular shape (including foams). The particles of microplastics were also classified by their major dimension into seven groups:

Ключевые слова

микропластик, загрязнение водной среды, реки, гидробионты, рыбы, пищевые цепи

Авторы

ФИООрганизацияДополнительноE-mail
Франк Юлия АлександровнаТомский государственный университет; ООО «Дарвин»канд. биол. наук, заведующий лабораторией, Лаборатория промышленной микробиологии, Биологический институт; заместитель директора по научной работеyulia.a.frank@gmail.com
Воробьев Егор ДаниловичТомский государственный университетстудент, Биологический институтvorobievegor@gmail.com
Бабкина Ирина БорисовнаТомский государственный университетканд. биол. наук, доцент, Кафедра ихтиологии и гидробиологии, Биологический институтbibsphera@gmail.com
Анциферов Дмитрий ВикторовичООО «Дарвин»канд. биол. наук, начальник отдела, Отдел производства биопрепаратовdmitry.antsiferov@gmail.com
Воробьев Данил СергеевичТомский государственный университетд-р биол. наук, директор института, Биологический институтdanilvorobiev@yandex.ru
Всего: 5

Ссылки

Eriksen M., Mason S., Wilson S., Box C., Zellers A., Edwards W., Farley H., Amato S. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Marine Pollution Bulletin. 2013;77:177-182. doi: 10.1016/j.marpolbul.2013.10.007
Sanchez W., Bender C., Porcher J.M. Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: preliminary study and first evidence. Environmental Research. 2014;128:98-100. doi: 10.1016/j.envres.2013.11.004
Barboza L.G.A., Lopes C., Oliveira P., Bessa F., Otero V., Henriques B., Raimundo J., Caetano M., Vale C., Guilhermino L. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Science of the Total Environment. 2020;717:134625. doi: 10.1016/j.scitotenv.2019.134625.
Mann H.B., Whitney D.R. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics. 1947;18:50-60.
Cowger W., Gray A.B., Eriksen M., Moore C., Thiel M. Evaluating wastewater effluent as a source of microplastics in environmental samples. In: Microplastics in Water and Wastewater. Karapanagioti H.K. and Kalavrouziotis I.K., editors. London, UK: IWA Publishing; 2019. pp. 109-131. doi: 10.2166/9781789060034_0109
Claessens M., Van Cauwenberghe L., Vandegehuchte M.B., Janssen C.R. New techniques for the detection of microplastics in sediments and field collected organisms. Marine Pollution Bulletin. 2013;70:227-233. doi: 10.1016/j.marpolbul.2013.03.009
Kottelat M. and Freyhof J. Handbook of European Freshwater Fish. Berlin, Germany: Kottelat, Cornol & Freyhof Publ.; 2007. 646 p.
Pravdin I.F. Rukovodstvo po izucheniyu ryb [Guide to fish study]. Moscow, Russia: Pishchevaya promyshlennost’ Publ.; 1966. 376 p. In Russian
Wong J.K.H., Lee K.K., Tang K.H.D., Yap P.-S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Science of the Total Environment. 2020;719:137512, doi: 10.1016/j.scitotenv.2020.137512
McNeish R.E., Kim L.H., Barrett H.A., Mason S.A., Kelly J.J., Hoellein T.J. Microplastic in riverine fish is connected to species traits. Scientific Reports. 2018;8:11639. doi: 10.1038/ s41598-018-29980-9
Pegado T.S.E.S., Schmid K., Winemiller K.O., Chelazzi D., Cincinelli A., Dei L., Giarrizzo T. First evidence of microplastic ingestion by fishes from the Amazon River estuary. Marine Pollution Bulletin. 2018;133:814-821. doi: 10.1016/j.marpolbul.2018.06.035
Capone A., Petrillo M., Misic C. Ingestion and elimination of anthropogenic fibres and microplastic fragments by the European anchovy (Engraulis encrasicolus) of the NW Mediterranean Sea. Marine Biology. 2020;167:166. doi: 10.1007/s00227-020-03779-7
Giani D., Baini M., Galli M., Casini S. Microplastics occurrence in edible fish species (Mullus harhatus and Merluccius merluccius) collected in three different geographical sub-areas of the Mediterranean Sea. Marine Pollution Bulletin. 2019;140:129-137. doi: 10.1016/j. marpolbul.2019.01.005
Bellas J., Martinez-Armental J., Martinez-Camara A., Besada V., Martinez-Gomez C. Ingestion of microplastics by demersal fish from the Spanish Atlantic and Mediterranean coasts. Marine Pollution Bulletin. 2016;109:55-60. doi: 10.1016/j.marpolbul.2016.06.026
Nadal M.A., Alomar C., Deudero S. High levels of microplastic ingestion by the semipelagic fish bogue Boops hoops (L.) around the Balearic Islands. Environmental Pollution. 2016;214:517-523. doi: 10.1016/j.envpol.2016.04.054
Jahan S., Strezov V., Weldekidan H., Kumar R., Kan T., Sarkodie S.A., He J., Dastjerdi B., Wilson S.P. Interrelationship of microplastic pollution in sediments and oysters in a seaport environment of the eastern coast of Australia. Science of the Total Environment. 2019;695:133924. doi: 10.1016/j.scitotenv.2019.133924
Vandermeersch G., Van Cauwenberghe L., Janssen C.R., Marques A., Granby K., Fait G., Kotterman M.J., Diogene J., Bekaert K., Robbens J., Devriese L. A critical view on microplastic quantification in aquatic organisms. Environmental Research. 2015;143:46-55. doi: 10.1016/j.envres.2015.07.016
Li J., Qu X., Su L., Zhang W., Yang D., Kolandhasamy P., Li D., Shi H. Microplastics in mussels along the coastal waters of China. Environmental Pollution. 2016;214:177-184. doi: 10.1016/j.envpol.2016.04.012
Smith M., Love D.C., Rochman C.M., Neff R.A. Microplastics in Seafood and the Implications for Human Health. Current Environmental Health Reports. 2018;5:375-386. doi: 10.1007/ s40572-018-0206-z
Campanale C., Massarelli C., Savino I., Locaputo V., Uricchio V.F. A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environmental Research and Public Health. 2020;17:1212. doi: 10.3390/ijerph17041212
Lusher A.L., Hollman P.C.H., Mendoza-Hill J.J. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper, No. 615. Rome, Italy: FAO; 2017. 126 p.
Wang W., Ge J., Yu X. Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicology and Environmental Safety. 2000;189:109913. doi: 10.1016/j. ecoenv.2019.109913
Farrell P., Farrell P., and Nelson K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environmental Pollution. 2013;177:1-3. doi: 10.1016/j. envpol.2013.01.046
Browne M.A., Dissanayake A., Galloway T.S., Lowe D.M., Thompson R.C. Ingested microscopic plastic translocates to the circulatory system of the mussel,Mytilus edulis (L.). Enviromental Science and Technology. 2008;42:5026-5031. doi: 10.1021/es800249a
Rochman C.M., Browne M.A., Halpern B.S., Hentschel B.T., Hoh E., Karapanagioti H.K., Rios-Mendoza L.M., Takada H., Teh S., Thompson R.C. Policy: Classify plastic waste as hazardous. Nature. 2013;494:69-171. doi: 10.1038/494169a
Chubarenko I., Esiukova E., Khatmullina L., Lobchuk O., Grave A., Kileso A., Haseler M. From macro to micro, from patchy to uniform: Analyzing plastic contamination along and across a sandy tide-less coast. Marine Pollution Bulletin. 2020;156:111198. doi: 10.1016/j. marpolbul.2020.111198
Hartmann N.B., Huffer T., Thompson R.C., Hassellov M., Verschoor A., Daugaard A.E., Rist S., Karlsson T., Brennholt N., Cole M., Herrling M.P., Hess M.C., Ivleva N.P., Lusher A.L., Wagner M. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science and Technology. 2019;53(3):1039-1047. doi: 10.1021/acs.est.8b05297
Thompson R.C., Olsen Y., Mitchell P.P., Davis A., Rowland S.J., John A.W., McGonigle D., Russell A.E. Lost at sea: Where is all the plastic? Science. 2004;304:838. doi: 10.1126/ science.1094559
Bergmann M., Gutow L., Klages M. Marine anthropogenic litter. Berlin, Germany: Springer Publ.; 2015. 447 p.
Rochman C.M. and Hoellein T. The global odyssey of plastic pollution. Thinking big about small particles reveals new features of the microplastic cycle. Science. 2020;368:1184-1185. doi: 10.1126/science.abc4428
Rochman C., Tahir A., Williams S., Baxa D.V., Lam R., Miller J.T., Teh F.-C., Werorilangi S., and Teh S.J. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports. 2015;5:14340. doi: 10.1038/ srep14340
Neves D., Sobral P., Ferreira J.L., Pereira T. Ingestion of microplastics by commercial fish off the Portuguese coast. Marine Pollution Bulletin. 2015;101:119-126. doi: 10.1016/j. marpolbul.2015.11.008
 Микропластик в желудочно-кишечном тракте рыб: первые результаты, полученные для реки Томь в Западной Сибири, Россия | Вестник Томского государственного университета. Биология. 2020. №  52. DOI: 10.17223/19988591/52/7

Микропластик в желудочно-кишечном тракте рыб: первые результаты, полученные для реки Томь в Западной Сибири, Россия | Вестник Томского государственного университета. Биология. 2020. № 52. DOI: 10.17223/19988591/52/7