Почвообразование в техногенных ландшафтах: тренды, результаты и отражение в современных классификациях (обзор)
Антропогенный фактор почвообразования проявляется на протяжении сотен лет. Однако промышленное освоение обширных территорий привело к актуализации проблемы техногенного и постантропогенного почвообразования в последние годы. В предлагаемой статье приведен обзор литературы, посвященной исследованию почвенного покрова техногенных ландшафтов. Описаны особенности почвообразования в зависимости от специфики слагающих техногенные объекты субстратов и климатических условий. Особое внимание уделено почвенным процессам, определяющим морфологическую организацию и направленность трансформации техногенных почв. Показано, что вместе со свойствами почвообразующих пород, облик молодых почв во многом формируют процессы аккумуляции органического вещества (гумусо-, подстилко- и торфонакопление). Рассмотрены подходы к восстановлению почвенного покрова техногенных ландшафтов. Отмечается, что эффективность проводимых рекультивационных мероприятий зависит от наличия ресурсов рекультивации и своевременности принятия решений по их использованию. На основе оценки почвенно-экологической эффективности различных направлений рекультивации предложены рекомендации по обследованию техногенных ландшафтов и восстановлению их почвенного покрова. Проведен анализ принципов построения и признаков, служащих для выделения и группировки техногенных почв в ряде почвенных классификаций. Приведена корреляция техногенных почв классификационных систем WRB, Soil Taxonomy (США), классификации и диагностики почв России и классификации почв техногенных ландшафтов, разработанной в ИПА СО РАН. Установлено, что все рассмотренные сегодня классификации в достаточной мере позволяют оценивать свойства почв и специфику техногенного почвообразования. При этом использование классификаций в научной литературе чаще всего ограничивается упоминанием только таксонов верхнего порядка.
Soil formation in technogenic landscapes: trends, results, and representation in the current classifications (Review).pdf Introduction The development of the post-industrial economy does not reduce industrial output or the rate of mineral extraction. On the contrary, the manufacturing productivity increase is accompanied by the transformation of large natural landscapes into technogenic barrens (technogenic landscapes). The formation and structure of technogenic landscapes are governed by human engineering activities to extract and process minerals [1]. Engineering soil transformation has the most significant impact on soils compared to agricultural and urban cases [2] because it leads to a drastic transformation not only of soils themselves but also of all soil formation factors. Soil formation in technogenic landscapes is accompanied by biocenotic succession [3], as well as changes in microclimate, initial substrate properties, and terrain features [4]. As opposed to human-transformed (disturbed) soils, where the natural processes are just corrected, soil-forming processes in technogenic landscapes utilize the “new” substrate [5]. Although some countries faced disturbed area problems as early as the 19th century, technogenic landscapes have become an object of soil research relatively recently. It was facilitated, firstly, by a significant increase in environmental footprint in the second half of the 20th century, and secondly by gaining experience in soil reclamation [6]. Until recently, the research on industrially disturbed territories has covered, mainly, the countries of Europe, the former USSR, and North America. By the beginning of the 1970s, technogenic landscapes were studied in the USA [7, 8], the DDR [9], Great Britain [10], Germany [11], Czechoslovakia [12], and Poland [13]. In Russia, as reported by the Public Committee for Safe Industrial and Mining Practices, by 1965, the reclaimed area exceeded 60.000 hectares [14]. In recent decades, a sharp increase in mineral deposit extraction has occurred in developing countries, so the geography of research has expanded significantly to cover China [15-17], India [18-20], South America [21-23], and Africa [24, 25]. The ever-increasing interest in technogenic landscapes is also related to their significant impact on adjacent areas. Thus, the risk of extreme flooding is higher in areas of intense mining [26-28]. Technogenic landscapes are also subjected to erosion and solifluction processes [21, 29]. Drain water ingress into migration flows affects ground and surface waters [30-32]. Artifacts containing carbonaceous material are prone to spontaneous combustion [33], which reduces the air quality [34]. Technogenic landscapes have not only negative but also some positive effects. In some cases, the fertility of mining waste is higher than that of natural soils [35]. There are cases when soils suitable for plant growth are produced from mining waste. Such waste is prepared by grinding stony fractions, adding active organic matter, and, sometimes, pH neutralization [36]. In the soils of technogenic landscapes, a particular field of study is their carbon sequestration capacity [37-39]. Regardless of the type of activity that produced technogenic landscapes and soils, there are always geochemically (and sometimes geomorphologically) Denis A. Sokolov, Vladimir A. Androkhanov, Evgeny V Abakumov 8 unstable formations. The forces driving the balancing of their surface properties with environmental factors are not only the soil formation drivers but may be caused by pedogenesis. For this reason, the studies of the soils of technogenic landscapes are of great interest. This review analyzes the existing global approaches to soil formation in technogenic landscapes, their reclamation, and their placement in the soil classification system. We consider the soils created through self-remediation or by reclamation of mining waste dumps, mineral processing waste, construction waste, and marine sediments deposited onshore during dredging operations. We paid particular attention to coal mine dump soils, as coal mining is the leading industry that expands technogenic landscapes. In addition, coal is mined on all continents except for Antarctica and in every climatic zone. Characteristic features of soil formation in technogenic landscapes Physical properties of parent materials. Compaction and decompaction. As technogenic landscapes are formed, significant volumes of various substrates are extracted or moved by heavy machinery. As a result, soil formation usually occurs on over-compacted substrates. Even when the process does not include surface leveling or the use of heavy equipment (for example, in water development projects), the soil density of technogenic landscapes is still higher than the density of natural soils in the adjacent areas [40]. While the density of the technogenic landscape soils composed of sandy, loamy and clayey substrates (loose rocks) is in the range of 1.1-1.8 g/cm3, it can reach 2.5 g/cm3 for stony surfaces. In both cases, as soils are formed, the density does not remain constant and changes through two alternating and opposite compaction and decompaction processes [41]. Technogenic soils compaction often continues even after a human activity is completed. For instance, stony soils continue to be compacted regardless of the climatic conditions through packing (shrinkage) of the soil-forming substrate (Table 1). Extra soil compaction occurs when the soils are used for agriculture [42], and, subsequently, as polyculture is replaced by monoculture [43]. The high density of loose soils in technogenic landscapes leads to low water permeability. Therefore, the soil formation on the surface of drill cuttings in a humid climate is hydromorphic [44], which is also detected in moderately humid areas covered by a fertile soil layer [45]. Reducing processes identified by increased methane emission [46] or formation of ferromanganese nodules [47] are detected in the soils formed on stony substrates. Decompaction occurs as a result of root system development initiating the soil structure formation [15]. Because loamy soils contain more material suitable for structure formation than stony soils, their deconsolidation is faster. Spatial and vertical heterogeneity. Heterogeneity is typical of the soils of technogenic landscapes. Spatial heterogeneity (Fig. 1) is found at sites where the surface is composed of various substrates [17, 48]. A pronounced profile Soil formation in technogenic landscapes: trends, results 9 heterogeneity is formed during reclamation, as rocks are laid layer-by-layer. It is also produced as young soil mature. In a humid climate, the textural differentiation of the profile of the technogenic landscape soils is caused by eluvial and illuvial processes [49]. In technogenic formations composed of stony rocks, the soil profile differentiation is due to physical, biophysical, chemical, and biochemical disintegration [50]. It is noted that the intensity of disintegration of coarse rock fragments is higher in arid areas, while for gravel and sand, it is higher in areas with optimal moisture content [51]. Fig. 1. Scheme of the formation of technogenic landscape spatial heterogeneity in surface mining Organic matter accumulation. Soil profile differentiation by organic matter content is a distinctive feature of most technogenic landscapes. Organic matter can be both inherited from soil-forming rocks (lithogenic), e.g., in the soils of coal mine dump, or generated by soil and biological processes. As many authors note (Table 1), the soils of technogenic landscapes, regardless of the rock composition and climatic conditions, feature intense organic matter accumulation rates exceeding those in natural soils. In the areas where organic matter accumulation occurs in zonal soils, organic carbon in technogenic landscapes is fixed by humus accumulation. High organic matter accumulation rates are also found in the soils with soilforming rocks enriched with lithogenic organic matter [61]. The accumulation of humus increases from stony to sandy [58] and further to loamy rocks [82]. In areas where the formation of thick humus horizons is not a feature of the zonal soil formation, the intensity and peculiarities of organic matter stabilization processes in the soils of technogenic landscapes are determined by the lithological properties of the substrates [83]. In the soils enriched with fine fractions (< 0.01 mm), high organic matter accumulation rates can also be found in subtropical and tropical climates [19, 64]. In such areas, they are also found on stony substrates capable of producing fine particles upon weathering [20, 23]. It should be noted that humus accumulation is not the only process of organic carbon accumulation in the soils. о Denis A. Sokolov, Vladimir A. Androkhanov, Evgeny V Abakumov Table 1 Q. g Q. bJ3 О fi Jm ЬХ a *-C 3 -o *c 3 о О. "3 3 з Sо iD СП ’B .2 m S O’- 72 40 S’! £ > 2 сЗ Й N D a ^ Пн ' £2 ^ N D >L) c3 ]--■ W) c3 40 i О Й I C-->л О О О 40 О 1-1 > > о и Table 1 (end) '5 2^ is ^ . С о 2 if о Й О G -Г 03 "g « G OJ О G > ■ 72 О C "o S £ G Я g G 43
Ключевые слова
Техносол,
отвальный камень,
угольная шахта,
классификация почв,
мелиорация,
техногенные ландшафты,
почвообразованиеАвторы
Соколов Денис Александрович | Институт почвоведения и агрохимии Сибирского отделения Российской академии наук | доктор биологических наук, ведущий научный сотрудник лаборатории рекультивации почв | sokolovdenis@issa-siberia.ru |
Андроханов Владимир Алексеевич | Институт почвоведения и агрохимии Сибирского отделения Российской академии наук | доктор биологических наук, директор | androhanov@issa-siberia.ru |
Абакумов Евгений Васильевич | Санкт-Петербургский государственный университет | доктор биологических наук, профессор РАН, заведующий кафедрой прикладной экологии биологического факультета | e_abakumov@mail.ru |
Всего: 3
Ссылки
Sokolova N.A., Gossen I.N., Sokolov D.A. Assessment of the suitability of vegetation indices to identify soil and ecological condition of the surface of anthracite deposits dumps. Ekologiya i promyshlennost’Rossii = Ecology and Industry of Russia. 2020;24(1):62-68. doi: 10.18412/1816-0395-2020-1-62-68 In Russian
Gossen I.N., Kulizhskiy S.P., Danilova E.B., Sokolov D.A. Boniting approach to assessment of soil-ecological state of man-general landscapes of Siberia (the example of anthracite, stone and brown coal deposits). Vestnik Novosibirskogo gosudarstvennogo agrarnogo universiteta = Bulletin of NSAU (Novosibirsk State Agrarian University). 2016;2:71-82. In Russian
Androkhanov V.A., Sokolov D.A. Soil evolution and reclamation of technogenic landscapes in Siberia. In: Advances in Raw Material Industries for Sustainable Development Goals. Litvinenko V, editor. CRC Press; 2020. pp. 268-273. doi: 10.1201/9781003164395-33
Gadzhiev I.M., Kurachev V.M. Ekologiya i rekul’tivatsiya tekhnogennykh landshaftov [Ecology and reclamation of technogenic landscapes]. Novosibirsk: Nauka, Siberian Branch Publishing House; 1992. 305 p. In Russian
Seredina V.P., Dvurechenskiy V.G., Pronina I.A., Akinina A.N. Material composition of embriozems developing on dumps of iron ore deposits in the south of Western Siberia. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya = Tomsk State University Journal of Biology. 2017;40:25-43. doi: 10.17223/19988591/40/2 In Russian, English Summary
Kulizhskiy S.P., Koronatova N.G., Artymuk S.Y., Sokolov D.A., Novokreshchennykh T.A. Comparison of the sedimentation method and the laser-diffraction analysis during determination of soil texture of natural and technogenic landscapes. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya = Tomsk State University Journal of Biology. 2010;12(4):21-31. In Russian
Androkhanov V.A., Sokolov D.A. Fractional composition of redox systems in the soils of coal mine dump. Eurasian Soil Science. 2012;45(4):399-403. doi: 10.1134/S1064229312020032
Prokof’eva T.V., Gerasimova M.I., Bezuglova O.S., Gorbov S.N., Bakhmatova K.A., Matinyan N.N., Gol’eva A.A., Zharikova E.A., Nakvasina E.N., Sivtseva N.E. Inclusion of soils and soillike bodies of urban territories into the Russian soil classification system. Eurasian Soil Science. 2014;47(10):959-967. doi: 10.1134/S1064229314100093
Polevoy opredelitel’ pochv Rossii [Russian soil field guide]. Ostrikova K.T., editor. Moscow: Soil institute in name of V.V. Dokuchaev; 2008. 182 p. In Russian
Bragina P.S., Gerasimova M.I. Pedogenic processes on mining dumps (a case study of southern Kemerovo oblast). Geography and Natural Resources. 2014;35(1):35-40. doi: 10.1134/S1875372814010053
Shishov L.L., Tonkonogov V.D., Lebedeva I.I., Gerasimova M.I. Klassifikatsiya i diagnostika pochv Rossii [Classification and diagnostics of soils in Russia]. Smolensk: Oykumena Publ.; 2004. 342 p. In Russian
Kabala C., Charzynski P., Chodorowski J., Drewnik M., Glina B., Greinert A., Hulisz P., Jankowski M., Jonczak J., Labaz B., Lachacz A., Marzec M., Mendyk L., Musial P., Musielok L., Smreczak B., Sowinski P., Switoniak M., Uzarowicz L., Waroszewski J. Polish Soil Classification, 6th edition - principles, classification scheme and correlations. Soil Science Annual. 2019;70(2):71-97. doi: 10.2478/ssa-2019-0009
McBratney A.B., Huang J., Minasny B., Micheli E., Hempel J.Comparisons between USDA Soil Taxonomy and the Australian Soil Classification System I: Data harmonization, calculation of taxonomic distance and inter-taxa variation. Geoderma. 2017;307:198-209. doi: 10.1016/j.geoderma.2017.08.009
Zhang W.L., Xu A.G., Zhang R.L., Ji H.J. Review of soil classification and revision of China soil classification system. Zhongguo nongye kexue = Scientia Agricultura Sinica. 2014;47(16):3214-3230. doi: 10.3864/j.issn.0578-1752.2014.16.009 In Chinese, English Summary
Grossman R.B. Chapter 2 Entisols. In: Pedogenesis and Soil Taxonomy. Wilding L.P., Smeck N.E. and Hall G.F., editors. Elsevier; 1983. pp. 55-90. doi: 10.1016/S0166-2481(08)70613-5
Sonn Y.-K., Cho H.-J., Hyun B.-K., Shin K.-S. Classification of Anthropogenic Soil “Ingwan” Series. Hangugtoyangbilyohaghoeji = Korean Journal of Soil Science and Fertilizer. 2015;48(5):535-541. doi: 10.7745/KJSSF.2015.48.5.535 In Korean
Legué doi:s S., Séré G., Auclerc A., Cortet J., Huot H., Ouvrard S., Watteau F., Schwartz C., Morel J.L. Modelling pedogenesis of Technosols. Geoderma. 2016;262:199-212. doi: 10.1016/j.geoderma.2015.08.008
Keys to Soil Taxonomy. 12th edition. Washington: USDA-Natural resources conservation service; 2014. 372 p.
Huot H., Simonnot M.-O., Morel J.L. Pedogenetic Trends in Soils Formed in Technogenic Parent Materials: Soil Science. 2015;180(4/5):182-192. doi: 10.1097/SS.0000000000000135
Charzyński P., Bednarek R., Greinert A., Hulisz P., Uzarowicz Ł. Classification of technogenic soils according to WRB system in the light of Polish experiences. Soil Science Annual. 2013;64(4):145-150. doi: 10.2478/ssa-2013-0023
Colombini G. Techno-moder:_A proposal for a new morpho-functional humus form developing on Technosols revealed by micromorphology. Geoderma. 2020;375:114526. doi: 10.1016/j.geoderma.2020.114526
IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015.International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports. No. 106. Rome: FAO Publ.; 2015. 192 p. [Electronic resource]. Available at: http://www.fao.org/3Za-i3794e.pdf (accessed: 12.03.2018)
Trofimov S.S., Taranov S.A. Osobennosti pochvoobrazovaniya v tekhnogennykh ekosistemakh [Features of soil formation in technogenic ecosystems]. Pochvovedenie. 1987;11:95-99. In Russian
Eterevskaya L.V., Donchenko M.T., Lekhtsier L.V. Sistematika i klassifikatsiya tekhnogennykh pochv [Systematics and classification of technogenic soils]. In: Rasteniya i promyshlennaya sreda [Plants and industry]. Sverdlovsk: Uralsky State University Publ., 1984. pp. 14-21. In Russian
Taranov S.A., Kandrashin E.R., Fatkulin F.A., Shushueva M.G., Rodynyuk I.S. Partsellyarnaya struktura fitotsenoza i neodnorodnost’ molodykh pochv tekhnogennykh landshaftov [Parcellar structure of phytocenosis and heterogeneity of young soils of technogenic landscapes]. In: Pochvoobrazovanie v tekhnogennykh landshaftakh [Soil formation in technogenic landscapes]. Novosibirsk: Nauka Publ.; 1979. pp. 19-57. In Russian
Gennadiev A.N., Solntseva N.P., Gerasimova M.I. O printsipakh gruppirovki i nomenklatury tekhnogenno-izmenennykh pochv [On principles of grouring and nomenclature of technogenic-transformed soils]. Pochvovedenie = Eurasian Soil Science. 1992;2:49-60. In Russian
Daniels W.L., Haering K., Galbraith J., Thomas J. Mine soil classification and mapping issues on pre- and post-smcra Appalachian coal mined lands. Journal American Society of Mining and Reclamation. 2004;1:450-479. doi: 10.21000/JASMR04010450
Keleberda T.N., Drugov A.N. O sistematike i klassifikatsii pochv, obrazovannykh v protsesse tekhnogeneza [On the taxonomy and classification of soils formed in the process of technogenesis]. Pochvovedenie. 1983;11:17-21. In Russian
GOST 17.5.1.03-86. Nature protection. Lands. Classification of overburden and enclosing rocks forbiological recultivation of lands. Moscow: Standardinform Publ.; 1986. 6 p. Available at: http://docs.cntd.ru/document/1200005963 (access 10.03.2021)
GOST 17.5.1.02-85. Soils. Nature protection. Lands. Classification of disturbed lands to be recultivated. Moscow: Standardinform Publ.; 1985. 15 p. Available at: http://docs.cntd.ru/document/1200003375 (accessed: 10.03.2021).
Kolesnikov B.P., Pikalova G.M. K voprosu o klassifikatsii promyshlennykh otvalov kak komponentov tekhnogennykh landshaftov [On the classification of industrial dumps as components of technogenic landscapes]. In: Rasteniya ipromyshlennaya sreda [Plants and industry]. Sverdlovsk: Uralsky State University Publ., 1974. pp. 3-28. In Russian
Motorina L.V. Opyt rekul’tivatsii narashennykh promyshlennost’yu landshaftov v SSSR i zarubezhnykh stranakh. [Experience of recultivation of landscapes disturbed by industry in the USSR and foreign countries]. Obzornaya informatsiya = Overview information. Moscow: VINTISKh Publ.; 1975. 18-46 p. In Russian
Bingyuan H., Lixun K. Mine land reclamation and eco-reconstruction in shanxi province i: mine land reclamation model. The Scientific World Journal. 2014:483862. doi: 10.1155/2014/483862
Barannik L.P. Ekologo-biologicheskie osnovy lesnoy rekul’tivatsii tekhnogennykh zemel’ Kuzbassa [Ecological and biological bases of forest recultivation of technogenic lands of Kuzbass. Dr. Sci. Dissertation, Ecology, Botany]. Novosibirsk: Central Siberian Botanical Garden SB RAS; 1992. 282 p. In Russian
Lavrinenko A.T., Ostapova N.A. He study of limiting factors of biological reclamation on dumps ridge form filling coal mines Khakassia. Ugol’ = Russian Coal Journal. 2018;12:98-100. doi: 10.18796/0041-5790-2018-12-98-101 In Russian
Gossen I.N. Pochvenno-ekologicheskaya effektivnost’ tekhnologiy rekul’tivatsii narushennykh zemel’ v Kuzbasse [Soil and ecological efficiency of technologies for recultivation of disturbed lands in Kuzbass. Cand. Sci. Dissertation, Soil Science]. Novosibirsk: Institute of Soil Science and Agrochemistry SB RAS. 2013. 170 p. In Russian
Kostenkov N.M., Komachkova I.V., Purtova L.N. Soils of technogenic landscapes in the far east: The Luchegorsk and Pavlovsk coal strip mines. Eurasian Soil Science. 2013;46(11):1049-1058. doi: 10.1134/S1064229313110057
Glaser B., Birk J.J. State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de indio). Geochimica et Cosmochimica Acta. 2012;82:39-51. doi: 10.1016/j.gca.2010.11.029
Nechaeva T.V., Sokolov D.A., Sokolova N.A. Estimation of absorption capacity of coals metamorphosed to a different extent using the example of potassium fixation. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya = Tomsk State University Journal of Biology. 2018;44:6-23. doi: 10.17223/19988591/44/1 In Russian, English Summary
Gonzalez-Mendez B., Chavez-Garda E. Re-thinking the Technosol design for greenery systems: Challenges for the provision of ecosystem services in semiarid and arid cities. Journal of Arid Environments. 2020;179:104191. doi: 10.1016/j.jaridenv.2020.104191
Mada P., Fernandez-Costas C., Rodriguez E., Sieiro P., Pazos M., Sanroman M.A. Technosols as a novel valorization strategy for an ecological management of dredged marine sediments. Ecological Engineering. 2014;67:182-189. doi: 10.1016/j.ecoleng.2014.03.020
Kirilov I., Banov M. Reclamation of lands disturbed by mining activities in Bulgaria. Agricultural Science and Technology. 2016;8(4):339-345. doi: 10.15547/ast.2016.04.066
Bilibio C., Retz S., Schellert C., Hensel O. Drainage properties of technosols made of municipal solid waste incineration bottom ash and coal combustion residues on potash-tailings piles: A lysimeter study. Journal of Cleaner Production. 2021;279:123442. doi: 10.1016/j.jclepro.2020.123442
Burykin A.M., Rol’ podstilayushchego substrata v plodorodii rekul’tiviruemykh zemel’ (na primere KMA) [The importance of the underlying substratum for the recultivated lands fertility (at the Kursk Magnetic Anomaly example)]. Pochvovedenie. 1991;9:159-164. In Russian
Idrisova Z.N., Garifullin F.S., Ishemiarov A.S. Dopustimyy uroven’ razbavleniya gumusovogo sloya vyshchelochennogo chernozema vskryshnoy porodoy pri stroitel’stve magistral’nykh truboprovodov [Permissible level of the leached chernozem humus layer “dissolution” by underlying rock in the course of pipeline construction]. Pochvovedenie. 1987;6:82-88. In Russian
Barnhise R.I., Hower J.M. Coal surface mine reclamation in the eastern united states: The revegetation of disturbed lands to hayland/pasture or cropland. Advances in Agronomy. 1997;61:233-275. doi: 10.1016/S0065-2113(08)60665-3
Mborah C., Bansah K.J., Boateng M.K. Evaluating alternate post-mining land-uses: A review. Environment and Pollution. 2016;5(1):9. doi: 10.5539/ep.v5n1p14
Dzhamalbekov Y.U. O pochvoobrazovanii pri rekul’tivatsii zemel’ v Kazakhstane [On the pedogenesis rate in the course of recultivation in Southern Kazakhstan]. Pochvovedenie. 1989;11:75-82. In Russian
Gadzhiev I.M., Kurachev V.M., Androkhanov V.A. Strategiya i perspektivy resheniya problem rekul’tivatsii narushennykh zemel’ [Strategy and prospects for solving the problems of recultivation of disturbed land]. Novosibirsk: TsERIS Publ.; 2001. 37 p. In Russian
Sokolov D.A., Kulizhskiy S.P., Lim A.G., Gurkova E.A., Nechaeva T.V., Merzlyakov O.E.Comparative evaluation of methods for determination of pedogenic organic carbon in coalbearing soils. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya = Tomsk State University Journal of Biology. 2017;39:29-43. doi: 10.17223/19988591/39/2 In Russian, English Summary
Solntseva N.P. Evolyutsionnye trendy pochv v zone tekhnogeneza [Trends in soil evolution under technogenic impacts]. Pochvovedenie = Eurasian Soil Science. 2002;1:9-20. In Russian
Sokolov D.A., Merzlyakov O.E., Domozhakova E.A. Estimation of lythogene potential of humus accumulating in soils of coal-mine dumps of Siberia. Vestnik Tomskogo gosudarstvennogo universiteta = Tomsk State University Journal. 2015;399:247-253. doi: 10.17223/15617793/399/40 In Russian, English Summary
Santos E.S., Abreu M.M., Madas F. Rehabilitation of mining areas through integrated biotechnological approach: Technosols derived from organic/inorganic wastes and autochthonous plant development. Chemosphere. 2019;224:765-775. doi: 10.1016/j. chemosphere.2019.02.172
Dang Z., Liu C., Haigh M.J. Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environmental Pollution. 2002;118(3):419-426. doi: 10.1016/S0269-7491(01)00285-8
Sokolov D.A., Morozov S.V., Abakumov E.V., Androkhanov V.A. Polycyclic aromatic hydrocarbons in soils of heaps of antracite mines of Siberia. Eurasian Soil Science. 2021;6:701-714. doi: 10.31857/S0032180X21060125
Trefilova O.V., Oskorbin P.A. Biological activity of waste dump substrates in the eastern part of the Kansk-Achinsk coal field. Eurasian Soil Science. 2014;47(2):96-101. doi: 10.7868/ S0032180X14020129
Trefilova O.V., Grodnitskaya I.D., Efimov D.Y. Dinamika ekologo-funktsional’nykh parametrov replantozemov na otvalakh ugol’nykh razrezov Tsentral’noy Sibiri [Dynamics of ecological and functional parameters of replantozems on dumps of coal mines in Central Siberia]. Pochvovedenie = Eurasian Soil Science. 2014;1:109-119. doi: 10.7868/ S0032180X14010134 In Russian
Naumov A.V., Naumova Y.N. Razlozhenie rastitel’noy massy v «molodykh» pochvakh KATEKa [Biodegradation of plant mass in “young” soils of KAHECa]. Pochvovedenie = Eurasian Soil Science. 1993;5:47-55. In Russian
Abakumov E.V., Gagarina E.I. Pochvoobrazovanie v posttekhnogennykh ekosistemakh kar’erov na Severo-Zapade Russkoy ravniny [Soil formation in post-mining ecosystems on the North-West of the Russian plain]. Saint Petersburg: Publishing House of Saint Petersburg University; 2006. 208 p. In Russian
Konstantinov A.O., Novoselov A.A., Loiko S.V. Special features of soil development within overgrowing fly ash deposit sites of the solid fuel power plant. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya = Tomsk State University Journal of Biology. 2018;43(27): 6-24. doi: 10.17223/19988591/43/1 In Russian, English Summary
Bragina P.S. Pochvoobrazovanie na otkhodakh gornodobyvayushchikh predpriyatiy Kemerovskoy oblasti [Soil formation on the waste of mining enterprises in Kemerovo region. Cand. Sci. Dissertation, Geography]. Moscow: Lomonosov Moscow State University; 2016. 156 p. In Russian
Acharya B.S., Kharel G. Acid mine drainage from coal mining in the United States - An overview. Journal of Hydrology. 2020;588:125061. doi: 10.1016/j.jhydrol.2020.125061
Kuka K., Franko U., Hanke K., Finkenbein P. Investigation of different amendments for dump reclamation in Northern Vietnam. Journal of Geochemical Exploration. 2013;132:41-53. doi: 10.1016/j.gexplo.2013.05.001
Ramasamy M., Power C. Evolution of acid mine drainage from a coal waste rock pile reclaimed with a simple soil cover. Hydrology. 2019;6(4):83. doi: 10.3390/hydrology6040083
Weiler J., Firpo B.A., Schneider I.A.H. Technosol as an integrated management tool for turning urban and coal mining waste into a resource. Minerals Engineering. 2020;147:1061798. doi: 10.1016/j.mineng.2019.106179
Bragina P.S., Tsibart A.S., Zavadskaya M.P., Sharapova A.V. Soils on overburden dumps in the forest-steppe and mountain taiga zones of the Kuzbass. Eurasian Soil Science. 2014;47(7):723-733. doi: 10.1134/S1064229314050032
Chabbi A., Rumpel C., Grootes P.M., Gonzalez-Perez J.A., Delaune R.D., Gonzalez-Vila F., Nixdorf B. Lignite degradation and mineralization in lignite-containing mine sediment as revealed by 14C activity measurements and molecular analysis. Organic Geochemistry. 2006;37:957-976. doi: 10.1016/j.orggeochem.2006.02.002
Rumpel C. Microbial use of lignite compared to recent plant litter as substrates in reclaimed coal mine soils. Soil Biology and Biochemistry. 2004;36(1):67-75. doi: 10.1016/j. soilbio.2003.08.020
Rumpel C., Kogel-Knabner I. The role of lignite in the carbon cycle of lignite-containing mine soils: evidence from carbon mineralisation and humic acid extractions. Organic Geochemistry. 2002;33(3):393-399. doi: 10.1016/S0146-6380(01)00169-3
Solntseva N.P., Rubilina N.E. Morfologiya pochv, transformirovannykh pri ugledobyche [On the morphology of soils transformed in the course of coal mining]. Pochvovedenie. 1987;2:105-118. In Russian
Shrestha R.K., Lal R. Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma. 2011;161(3-4):168-176. doi: 10.1016/j.geoderma.2010.12.015
Pereverzev V.N., Ivliev A.I., Gorbunov A.V., Lyapunov S.M. Primary pedogenesis in the tailings of apatite-nepheline ores on the Kola Peninsula. Eurasian Soil Science. 2007;8:900-906. doi: 10.1134/S1064229307080133
Abakumov E.V., Gagarina E.I. Pochvoobrazovanie v posttekhnogennykh ekosistemakh kar’erov na Severo-Zapade Russkoy ravniny [Soil formation in post-mining ecosystems on the North-West of the Russian plain]. Saint Petersburg: Publishing House of Saint Petersburg University; 2006. 208 p. In Russian
Kurachev V.M., Androkhanov V.A. Klassifikatsiya pochv tekhnogennykh landshaftov [Classification of soils of techogenic landscapes]. Sibirskiy Ekologicheskiy Zhurnal = Contemporary Problems of Ecology. 2002;3:255-261. In Russian
Filcheva E., Noustorova M., Gentcheva-Kostadinova S., Haigh M.J. Organic accumulation and microbial action in surface coal-mine spoils, Pernik, Bulgaria. Ecological Engineering. 2000;15(1-2):1-15. doi: 10.1016/S0925-8574(99)00008-7
Hu P., Zhang W., Chen H., Li D., Zhao Y., Zhao J., Xiao J., Wu F., He X., Luo Y., Wang K. Soil carbon accumulation with increasing temperature under both managed and natural vegetation restoration in calcareous soils. Science of the Total Environment. 2021;767(1):145298. doi: 10.1016/j.scitotenv.2021.145298
Frouz J., Vinduskova O. Soil organic matter accumulation in postmining sites: Potential drivers and mechanisms. Soil Management and Climate Change. 2018;8:103-120. doi: 10.1016/B978-0-12-812128-3.00008-2
Masciandaro G. Phytoremediation of dredged marine sediment: Monitoring of chemical and biochemical processes contributing to sediment reclamation. Journal of Environmental Management. 2014;134:166-174. doi: 10.1016/j.jenvman.2013.12.028
Uzarowicz L., Zagorski Z., Mendak E., Bartminski P., Szara E., Kondras M., Oktaba L., Turek A., Rogozinski R. Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part I. Properties, classification, and indicators of early pedogenesis. Catena. 2017;157:75-89. doi: 10.1016/j. catena.2017.05.010
Vinduskova O., Dvoracek V., Prohaskova A., Frouz J. Distinguishing recent and fossil organic matter - A critical step in evaluation of post-mining soil development - using near infrared spectroscopy. Ecological Engineering. 2014;73:643-648. doi: 10.1016/j. ecoleng.2014.09.086
Shugaley L.S. Pervichnoe pochvoobrazovanie na otvalakh vskryshnykh porod pod kul’turoy sosny [Initial soil formation on the tailings of strip mines under pine cultures]. Pochvovedenie = Eurasian Soil Science. 1997;2:247-254. In Russian
Abakumov E.V., Frouz J. Evolution of the soil humus status on the calcareous neogene clay dumps of the Sokolov quarry complex in the Czech Republic. Eurasian Soil Science. 2009;42(7):718-724. doi: 10.1134/S1064229309070023
Burykin A.M., Zasorina E.V. Protsessy mineralizatsii i gumifikatsii rastitel’nykh ostatkov v molodykh pochvakh tekhnogennykh ekosistem [Mineralization and humification of plant remains in young soils of technogenic ecosystems]. Pochvovedenie = Soviet Soil Science. 1989;2:61-69. In Russian
Ruiz F., Perlatti F., Oliveira D.P., Ferreira T.O. Revealing tropical technosols as an alternative for mine reclamation and waste management. Minerals. 2020;10(2):110. doi: 10.3390/ min10020110
Wang J., Zhao F., Yang J., Li X. Mining site reclamation planning based on land suitability analysis and ecosystem services evaluation: A case study in Liaoning Province, China. Sustainability. 2017;9(6):890. doi: 10.3390/su9060890
Frouz J., Mudrak O., Reitschmiedova E., Walmsley A., Vachova P., Simackova H., Albrechtova J., Moradi J., Kucera J. Rough wave-like heaped overburden promotes establishment of woody vegetation while leveling promotes grasses during unassisted post mining site development. Journal of Environmental Management. 2018;205:50-58. doi: 10.1016/j.jenvman.2017.09.065
Sokolov D.A., Androkhanov V.A., Kulizhskiy S.P., Domozhakova E.A., Loiko S.V. Morphogenetic diagnostics of soil formation on tailing dumps of coal quarries in Siberia. Eurasian Soil Science. 2015;1(48):95-105. doi: 10.1134/S1064229315010159
Evans D.M., Zipper C.E., Burger J.A., Strahm B.D., Villamagna A.M. Reforestation practice for enhancement of ecosystem services on a compacted surface mine: Path toward ecosystem recovery. Ecological Engineering. 2013;51:16-23. doi: 10.1016/j.ecoleng.2012.12.065
Shikula N.K., Drugov A.N. Agrofizicheskie svoystva rekul’tiviruemykh pochvogruntov Chasov-Yarskogo mestorozhdeniya [Agrophysical phoperties of recultivatied soils of Chasov-Yar deposits of refractory clays]. Pochvovedenie = Soviet Soil Science. 1974;9:63-70. In Russian
Sokolov D.A., Kulizskiy S.P., Domozhakova Е.А., Gossen I.N. Soil forming features under different environmental conditions in man-caused landscapes of South Siberia. Vestnik Tomskogo gosudarstvennogo universiteta = Tomsk State University Journal. 2012;364:225-229. In Russian
Kusov A.V. Granulometricheskaya diagnostika vnutripochvennogo vyvetrivaniya oblomochnogo materiala v tekhnogennykh landshaftakh [Granulometric diagnostics of intersoil erosion of detritus in man-caused landscapes]. Sibirskiy Ekologicheskiy Zhurnal = Contemporary Problems of Ecology. 2007;5:837-842. In Russian
Chenot J., Jaunatre R., Buisson E., Bureau F., Dutoit T. Impact of quarry exploitation and disuse on pedogenesis. Catena. 2018;160:354-365. doi: 10.1016/j.catena.2017.09.012
Daniels W.L., Haering K.C., Galbraith J.M. Mine soil morphology and properties in pre- and post-smcra coal mined landscapes in Southwest Virgina. Journal American Society of Mining and Reclamation. 2004;1:421-449. doi: 10.21000/JASMR04010421
Sokolov D.A., Kulizhskiy S.P., Loiko S.V., Domozhakova E.A. Using electronic scanning microscopy for diagnostics of soil-forming processes on the surface of coal-mine dumps in Siberia. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya = Tomsk State University Journal of Biology. 2014;3(27):36-52. In Russian, English Summary
Jacinthe P-A, Lal R. Spatial variability of soil properties and trace gas fluxes in reclaimed mine land of southeastern Ohio. Geoderma. 2006;136(3-4):598-608. doi: 10.1016/j. geoderma.2006.04.020
Shein E.V., Umarova A.B., Sokolova I.V., Milanovskii E.Y., Shcheglov D.I. Structural status of technogenic soils and the development of preferential water flows. Eurasian Soil Science. 2009;42(6):636-644. doi: 10.1134/S1064229309060088
Smagin A.V., Kol’tsov I.N., Pepelov I.L., Kirichenko A.V., Sadovnikova N.B., Kinzhaev R.R. The physical state of finely dispersed soil-like systems with drilling sludge as an example. Eurasian Soil Science. 2011;44(2):163-172. doi: 10.1134/S1064229311020128
Ussiri D.A.N., Guzman J.G., Lal R., Somireddy U. Bioenergy crop production on reclaimed mine land in the North Appalachian region, USA. Biomass and Bioenergy. 2019;125:188-195. doi: 10.1016/j.biombioe.2019.04.024
Guzman J.G., Ussiri D.A.N., Lal R. Soil physical properties following conversion of a reclaimed minesoil to bioenergy crop production. Catena. 2019;176:289-295. doi: 10.1016/j.catena.2019.01.020
Sokolov D.A. Diversifikatsiya pochvoobrazovaniya na otvalakh ugol ’’nykh mestorozhdeniy Sibiri [Diversification of soil formation on the dumps of coal deposits in Siberia. Dr. Sci. Dissertation, Soil Science]. Novosibirsk: Institute of Soil Science and Agrochemistry SB RAS; 2019. 329 p. In Russian
Androkhanov V.A., Ovsyannikova S.V., Kurachev V.M. Tekhnozemy: svoystva, rezhimy, funktsionirovanie [Tekhnozems: Properties, modes, functioning]. Novosibirsk: Nauka, Siberian Branch Publ.; 2000. 200 p. In Russian
Rees F., Dagois R., Derrien D., Fiorelli J.-L., Watteau F., Morel J.L., Schwartz C., Simonnot M.-O., Sere G. Storage of carbon in constructed technosols: in situ monitoring over a decade. Geoderma. 2019;337:641-648. doi: 10.1016/j.geoderma.2018.10.009
Ussiri D.A.N., Jacinthe P.-A., Lal R. Methods for determination of coal carbon in reclaimed minesoils: A review. Geoderma. 2014;214-215:155-167. doi: 10.1016/j. geoderma.2013.09.015
Cfikova B., Wos B, Pietrzykowski M, Frouz J. Development of soil chemical and microbial properties in reclaimed and unreclaimed grasslands in heaps after opencast lignite mining. Ecological Engineering. 2018;123:103-111. doi: 10.1016/j.ecoleng.2018.09.004
Firpo B.A., Amaral Filho J.R., Schneider I.A.H. A brief procedure to fabricate soils from coal mine wastes based on mineral processing, agricultural, and environmental concepts. Minerals Engineering. 2015;76:81-86. doi: 10.1016/j.mineng.2014.11.005
Maryati S. Land capability evaluation of reclamation Areain Indonesia coal mining using LCLP software. Procedia Earth and Planetary Science. 2013;6:465-473. doi: 10.1016/j. proeps.2013.01.061
Claxton L.D. The history, genotoxicity, and carcinogenicity of carbon-based fuels and their emissions. Part 2: Solid fuels. Mutation Research/Reviews in Mutation Research. 2014;762:108-122. doi: 10.1016/j.mrrev.2014.07.002
Querol X., Zhuang X., Font O. Izquierdo M., Alastuey A., Castro I., van Drooge B.L., Moreno T., Grimalt J.O., Elvira J., Cabanas M., Bartroli R., Hower J.C., Ayora C., Plana F., Lopez-Soler A. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data.International Journal of Coal Geology. 2011;85(1):2-22. doi: 10.1016/j.coal.2010.09.002
Mishra S.K., Hitzhusen F.J., Sohngen B.L., Guldmann J.-M. Costs of abandoned coal mine reclamation and associated recreation benefits in Ohio. Journal of Environmental Management. 2012;100:52-58. doi: 10.1016/j.jenvman.2012.01.021
Vodyanitskii Y.N. Status and behavior of natural and technogenic forms of as, sb, se, and te in ore tailings and contaminated soils: A review. Eurasian Soil Science. 2010;43(1):30-38. doi: 10.1134/S1064229310010059
Wei X., Wei H., Viadero Jr. R.C. Post-reclamation water quality trend in a Mid-Appalachian watershed of abandoned mine lands. Science of the Total Environment. 2011;409( 5):941-948. doi: 10.1016/j.scitotenv.2010.11.030
Solntseva N.P., Rubilina N.E., Gerasimova M.I., Alistratov S.V. Izmenenie morfologii vyshchelochennykh chernozemov v rayonakh dobychi uglya [Morphological transformations of leached chernozems in coal mining areas (the example of Moscow brown coal basin)]. Pochvovedenie = Eurasian Soil Science. 1992;1:17-29. In Russian
Townsend P.A., Helmers D.P., Kingdon C.C., McNeil B.E., de Beurs K.M., Eshleman K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976-2006 Landsat time series. Remote Sensing of Environment. 2009;113(1):62-72. doi: 10.1016/j.rse.2008.08.012
Negley T.L., Eshleman K.N. Comparison of stormflow responses of surface-mined and forested watersheds in the Appalachian Mountains, USA. Hydrological Process. 2006;20(16):3467-3483. doi: 10.1002/hyp.6148
Eisenbies M.H., Aust W.M., Burger J.A., Adams M.B.. Forest operations, extreme flooding events, and considerations for hydrologic modeling in the Appalachians - A review. Forest Ecology and Management. 2007;242:77-98. doi: 10.1016/j.foreco.2007.01.051
Festin E.S., Tigabu M., Chileshe M.N., Syampungani S., Oden P.C. Progresses in restoration of post-mining landscape in Africa. Journal of Forestry Research. 2019;30:381-396. doi: 10.1007/s11676-018-0621-x
Ruiz F., Resmini Sartor L., de Souza Junior V.S., Cheyson Barros dos Santos J, Osorio Ferreira T. Fast pedogenesis of tropical Technosols developed from dolomitic limestone mine spoils (SE-Brazil). Geoderma. 2020;374:114439. doi: 10.1016/j.geoderma.2020.114439
Daniell A., van Deventer P.W.. An overview of pedogenesis in Technosols in South Africa. South African Journal of Plant and Soil. 2018;35(4):281-291. doi: 10.1080/02571862.2018.1470265
Rocha-Nicoleite E., Overbeck G.E., Muller S.C. Degradation by coal mining should be priority in restoration planning. Perspectives in Ecology and Conservation. 2017;15(3):202-205. doi: 10.1016/j.pecon.2017.05.006
Dommguez-Haydar Y. Evaluation of reclamation success in an open-pit coal mine using integrated soil physical, chemical and biological quality indicators. Ecological Indicators. 2019;103:182-193. doi: 10.1016/j.ecolind.2019.04.015
Ahirwal J., Maiti S.K. Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India. Catena. 2016;140:155-163. doi: 10.1016/j.catena.2016.01.028
Maiti S.K., Maiti D. Ecological restoration of waste dumps by topsoil blanketing, coirmatting and seeding with grass-legume mixture. Ecological Engineering. 2015;77:74-84. doi: Z/10.1016/j.ecoleng.2015.01.003
Kumar B.M. Mining waste contaminated lands: an uphill battle for improving crop productivity. Journal of Degraded and Mining Lands Management. 2013;1(1):43-50. doi: 10.15243/jdmlm.2013.011.043
Feng Y., Wang J., Bai Z., Reading L. Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Science Reviews. 2019;191:12-25. doi: 10.1016/j. earscirev.2019.02.015
Dommguez-Haydar H., Lixun K. Mine land reclamation and eco-reconstruction in Shanxi Province I: Mine land reclamation model. The Scientific World Journal. 2014;2014:483862. doi: 10.1155/2014/483862
Zhao Z., Shahrour I., Bai Z., Fan W., Feng L., Li H. Soils development in opencast coal mine spoils reclaimed for 1-13 years in the West-Northern Loess Plateau of China. European Journal of Soil Biology. 2013;55:40-46. doi: 10.1016/j.ejsobi.2012.08.006
Skawina T. Organization und stand der rekultivierung in der Volksrepublic Polen. Sbornik I Internationales Symposium. 1962:32-38.
Motorina L.V., Zabelina N.M. Rekul’tivatsiya zemel’, narushennykh gornodobyvayushchey promyshlennost’yu [Reclamation of land disturbed by the mining industry]. Moscow: MSKh SSSR Publ.; 1968. 90 p. In Russian
Parizek J. Organizacja i stan recultiwacia [Organization and state of reclamation]. Czechoslowakiej Republice socjalistycznej Biuletyn = Czechoslovak Socialist Republic Biuletyn. 1962;1:33-37. In Czech
Beaver S.H., Land reclamation. Journal Royal Institution of Chartered Surveyors. 1960;92(12):25-40.
Knabe W. Methods and Results of Strip-Mine Reclamation in Germany. The Ohio Journal of Science. 1964;64(2):75-105.
Deasy G.F., Griess P.R. Coal strip-mine reclamation in the United States. Geographical Review. 1965;55(1):107-108.
Werner K. Organization und stand der rekultivierung in der Deutschen Demokratischen Republik. In: Sbornik I International symposium on issues relating to the recultivation of dumps and heaps. Leipzig. 1962. pp. 54-59. In German
Motorina L.V., Ovchinnikov V.A. Promyshlennost’ i rekul’tivatsiya zemel’ [Industry and land reclamation]. Moscow: Mysl’ Publ.; 1975. 240 p. In Russian
Given J.A. The future in open pit mining and stripping in the United States. Soil Conservation Society of America. Proc. 17th Annual Meeting. Washington. 1962:93-97.
Baize D., Girard M.C. Referentiel pedologique [Soil repository]. Versailles: Versailles Cedex Publ.; 2008. 432 p. In French
Androkhanov V.A., Kurachev V.M. Pochvenno-ekologicheskoe sostoyanie tekhnogennykh landshaftov: dinamika i otsenka [Soil-ecological state of technogenic landscapes: dynamics and evaluation]. Novosibirsk: Siberian Branch of the Russian Academy of Sciences Publishing House; 2010. 224 p. In Russian
Sokolov D.A., Kulizhskiy S.P. Singenesys of vegetation cover and redox systems forming in soils of burrows of coal-pits. Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya = Tomsk State University Journal of Biology. 2013;1(21):22-29. doi: 10.17223/19988591/21/2 In Russian, English Summary
Reymers N.F. Prirodopol’zovanie: Slovar’-spravochnik [Nature management: A reference dictionary]. Moscow: Mysl’ Publ.; 1990. 637 p. In Russian
Gerasimova M.I., Stroganova M.N., Mozharova N.V., Prokof’eva T.V. Antropogennye pochvy: Genezis, geografiya, rekul’tivatsiya [Anthropogenic soils: Genesis, geography, reclamation]. Smolensk: Oykumena Publ.; 2003. 268 p. In Russian