Бактерицидное действие ультрафиолетового излучения эксимерных и эксиплексных лампна чистые культуры микроорганизмов
Аннотация. Проведены сравнительные исследования бактерицидного действия излучения нескольких новых эксиламп и ртутной лампы низкого давления на чистые культуры микроорганизмов - стандартные тест-штаммы Escherichia coli, Staphylococcus aureus и выделенные из внешней среды. Получен выраженный бактерицидный эффект, причем изученные культуры микроорганизмов обладают различной чувствительностью к излучению эксиламп.
Analysisof excilamps UV radiation bactericide action on pure microorganism cultures .pdf Бурное развитие исследований в области стерилизации, ставшее особенно заметным в последнее десятилетие, вызвано возросшим количеством научных и производственных направлений, требующих создания стерильных условий. Широкое распространение получают различные способы дезинфекции окружающей человека среды.Среди хорошо известных и широко применяемых методов стерилизации достойное место занимают методы, основанные на использовании ультрафиолетового излучения (УФ излучение), которое как высокоточное оружие поражает именно живые клетки, чаще всего не изменяя химического состава среды (химические дезинфектанты). УФ излучение позволяет осуществлять эффективную стерилизацию, не ухудшая внешнего вида и функциональный характеристик воды, пищи, упаковки, воздуха помещений и т. д., что выгодно отличает его от химических способов дезинфекции.УФ дезинфекция обладает такими достоинствами, как: 1) высокая эффективность против широкого спектра патогенных микроорганизмов в воде; 2) минимальные пространственные требования к установкам; 3) отсутствие в использовании дополнительных химических веществ (безреагентный процесс); 4) короткое время обработки сред; 5) отсутствие влияния на вкус и запах чистой воды; 6) минимум побочных продуктов, включая токсичные вещества (за редким исключением после обработки не образуются мутагенные фотопродукты); 7) относительная безопасность и легкость введения в эксплуатацию (например, не надо транспортировать и хранить цистерны с хлором); 8) легкость в автоматизации оборудования; 9) возможность внедрения УФ дезинфекции в традиционные системы очистки без их существенного переустройства.Бактерицидное действие УФ излучения основано на фотохимических реакциях, в результате которых происходят необратимые повреждения ДНК. Помимо ДНК, ультрафиолет действует и на другие структуры клеток, в частности на РНК, клеточные мембраны и т.д. Наиболее эффективным инактивирующим действием обладает коротковолновое ультрафиолетовое излучение с длинами волн 200-295 нм (так называемый бактерицидный диапазон спектра). Излучение в этом диапазоне хорошо поглощается как пуриновыми, так и пиримидиновыми азотистыми основаниями ДНК, которая, как было доказано, является основной мишенью при летальном и мутагенном действии УФ излучения на биосистемы [1]. Отметим, что в рамках бактерицидного диапазона спектра чувствительность к действию УФ излучения вирусов и клеток различного происхождения может сильно различаться.УФ инактивация была впервые получена в 1892 г., однако исследование, создание и разработка устройств для её осуществления по-прежнему остаются актуальными [2-5]. Первые ультрафиолетовые лампы были кварцевыми и получили своё название от названия материала колбы.В целях получения экономичного источника бактерицидного излучения в 1936-1940 гг. были разработаны увиолевые ртутно-аргоновые лампы низкого давления (РЛНД). В них около 90% составляет доля атомарной линии ртути 253,7 нм, обеспечивающей бактерицидное действие. Устройства имеют простые источники питания и неприхотливы в эксплуатации, что обусловило их широкое распространение. Бактерицидная отдача современных РЛНД достигает 16-33% [6. С. 27].Кроме того, получили распространение мощные ртутные лампы высокого давления (РЛВД), спектр которых представляет собой широкополосный континуум. По разным оценкам, в области длин волн 240-300 нм сосредоточено 11 -15% лучистого потока [7], а бактерицидная отдача составляет 8-12% [4, 6].Общие недостатки этих устройств - вероятность разгерметизации колбы лампы и загрязнение ртутью окружающей среды, что недопустимо в случае медицинских и биологических приложений. Массовое производство ртутных ламп ведёт к большим затратам по их утилизации [8].В последнее время заметное распространение получают эксимерные и эк-сиплексные лампы (или эксилампы) [9-13]. Наиболее привлекательными для практических целей являются эксилампы барьерного и емкостного разрядов. Достоинствами этих ламп с практической точки зрения являются:1))отсутствие ртути в колбе, что соответствует экологическим стандартам (исключая эксилампы видимого диапазона спектра на галогенидах ртути HgX*, которые для дезинфекции не применяются);2))разнообразие в конструктивном исполнении;3))легкость включения с быстрым выходом на максимум мощности после зажигания (питание эксиламп барьерного и емкостного разрядов осуществляется импульсами напряжения с амплитудой до нескольких киловольт и частотой до нескольких сотен килогерц, поэтому данные устройства не нуждаются в специальных стартерах);4))в отличие от люминесцентных и тепловых источников излучения, у эк-силамп большая часть лучистого потока сосредоточена в УФ или вакуумном ультрафиолетовом (ВУФ) диапазоне, в сравнительно узкой спектральной зоне полушириной от 2 до 15 нм для эксиплексных молекул и до 30 нм для эк-симеров инертных газов.1)1)К нмВ экспериментах использовалась XeBr-эксилампа (модель XeBr_BD_P, лаборатория оптических излучений Института сильноточной электроники СО РАН, Россия) [22], обеспечивающая освещенность до 10 мВт/см2, спектр, представленный на рис. 2, и бактерицидная отдача 8,7%. В качестве РЛНД была взята лампа Philips TUV-15 c бактерицидной отдачей 27% [6]. Эта лампаСравнительный анализ чувствительности культур микроорганизмов к бактерицидному действию излучения KrClKrBr, KrCl, XeBr-эксиламп показал, что большей устойчивостью обладают стафилококки, псевдомонады и бациллы [28]: они инактивируются большими дозами излучения (см. таблицу). Самой чувствительной к воздействию излучения всех видов использованных в эксперименте эксиламп является Escherichia coli (рис. 4-6).Результаты исследования влияния действия излучения эксиламп на микроорганизмы и сравнение их с другими светотехническими устройствами, применяемыми для УФ стерилизации, свидетельствуют, что их использование оказывает выраженный бактерицидный эффект на широкий спектр микроорганизмов, обитающих в воде, на поверхности кожи и слизистых оболочек человека. Протестированные штаммы микроорганизмов обладают различной чувствительностью к излучению эксиламп, однако излучение экси-ламп не обладает избирательностью действия и губительно действует на все использованные в эксперименте культуры микроорганизмов.
Ключевые слова
Escherichia coli ,
Staphylococcus aureus ,
р. Pseudomonas ,
р. Bacillus ,
р. Sarcina ,
инактивация ,
УФ излучение ,
эксилампа Авторы
Лаврентьева Л.В. | | | |
Авдеев С.М. | | | |
Соснин Э.А. | | | |
Величевская К.Ю. | | | |
Всего: 4
Ссылки
Руководство З 3.1.683-98 // Светотехника. 1998. № 4. С. 4-18.
Мудрецова-Висс К.А., Кудряшова А.А., Дедюхина В.П. Микробиология, санитария и гигиена. М.: Деловая литература, 2001. 388 с.
Clauss M., Mannersmann R., Kolch A. Photoreactivation of Escherichia coli and Yersinia enterolytica after irradiation with a 222 nm excimer lamp compared to a 254 nm low-pressure mercury lamp // Acta hydrochim. Hydrobiol. 2005. Vol. 33, № 6. P. 579-584.
Коротяев А.И., Бабичев С.А. Медицинская микробиология, иммунология и вирусология. СПб.: Специальная литература, 1998. 592 с.
Определитель бактерий Берджи / Под ред. Дж. Хоулта, Н. Крига и др. М.: Мир, 1997. Т. 1-2. 800 с.
Патент RU 62224. Приоритет 09.01.2007. Рег. № заявки 2007100293/22 от 09.01.2007. Опубл. 27.05.2007. Бюл. № 15.
Von Sonntag C. Process technologies for water treatment. New York: Plenum Press, 1987. Р. 128-144.
Oppenländer T. Photochemical Purification of Water and Air. Weincheim: WILEY-VCH Verlag, 2003. 368 р.
Портативные коаксиальные эксилампы серии BD_P [Электронный ресурс] // http://www.hcei.tsc.ru/ru/cat/technologies/excilamps/developments/BD_P.pdf
Avdeev S.M., Boichenko A.M., Sosnin E.A. et al. Barrier-Discharge Excilamp on a Mixture of Krypton and Molecular Bromine and Chlorine. Laser Physics. 2007. Vol. 17, № 9. P. 1119-1123.
Патент RU 2225225 С2. Приоритет 14.08.2001. Рег. № заявки 2001122943/13. Опубл. 10.03.2004. Бюл. №7.
Патент RU 43458. Приоритет 27.09.2004. Рег. № заявки 2004128561/22 от 27.09.2004. Опубл. 27.01.2005. Бюл. № 3.
Sosnin E.A., Lavrent'eva L.V., Yusupov M.R. et al. Proc. of 2nd International Workshop on Biological Effects of Electromagnetic Fields. Rhodes Greece. London, 2002. P. 953.
Oppenländer Т., Baum G. Wasseraufbereitung mit Vakuum-UV/UV-Excimer-Durchflussphotoreaktoren. Wasser-Abwasser. 1996. Vol. 137, № 6. P. 321-325.
Coogan J.J. Processing opaque fluids using water-coupled excimer light sources // Proc. of 10th Int. Symposium on the Science and Technology of Light Sources. Toulouse, 2004. P. 168, 521.
Соснин Э.А. Эксилампы и новое семейство газоразрядных ультрафиолетовых облучателей на их основе // Светотехника. 2006. № 6. С. 25-31.
Ломаев М.И., Соснин Э.А., Тарасенко В.Ф. и др. Эксилампы барьерного и емкостного разряда и их приложения // ПТЭ. 2006. № 5. С. 5-26.
Wolsey R. The Lamp Disposal Controversy // Lighting Futures. 1998. Vol. 3, № 2. P. 1-4. (http://www.lrc.rpi.edu./programs/Futures/LF-LampDisposal/index.asp).
Eliasson B., Kogelschatz U. UV Excimer Radiation from Dielectric-barrier Discharges // Appl. Phys. B. 1988. Vol. B 46. P. 299-303.
Boyd I.W., Zhang J.-Y., Kogelschatz U. Development and Applications of UV Excimer Lamps / Photo-Excited processes, Diagnostics and Applications. (Ed. A. Peled). The Netherlands: Kluwer Academic Publishers, 2003. P. 161-199.
Ломаев М.В., Скакун В.С., Соснин Э.А. и др. Эксилампы - эффективные источники спонтанного УФ и ВУФ излучения // Успехи физических наук. 2003. Т. 173, № 2. С. 201-217.
Haag W.R. Comparison of commercial lamps for radical oxidation and direct photolysis in water: Report for LLNL. Livermore, CA. 1996. 6 Aug. 18 р.
Методические указания МУ 2.3. 975-00 // Светотехника. 2001. № 1. С. 21-31.
Лаврентьева Л.В., Мастерова Я.В., Соснин Э.А. УФ-инактивация микроорганизмов: сравнительный анализ методов // Вестник Томского государственного университета. Сер. «Биологические науки». Приложение. 2003. № 8. С. 108-113.
Gates F. A study of the bacterial action of ultraviolet light III / The absorption of ultraviolet by bacteria // Journal of General Physiology. 1930. Vol. 14, № 1. P. 31-42.
Вассерман А.Л. Применение ультрафиолетового излучения для обеззараживания воздуха // Светотехника. 2004. № 1. С. 46-47.
Васильев А.И., Красночуб А.В., Кузьменко М.Е. и др. Анализ современных промышленных источников бактерицидного ультрафиолетового излучения // Светотехника. 2004. № 6. С. 42-45.
Шлифер Э.Д. Устройство комбинированной СВЧ УФ озонной бактерицидной обработки жидких, газообразных, и твердофазных объектов // Светотехника. 2004. № 6. С. 46-50.