Accumulation of uranium-238 by representatives of different ecological levels in the Yenisei River ecosystem
The aim of the research was a comparative evaluation of the intensity of uranium-238 accumulation in the biomass of aquatic organisms, occupying different trophic levels in the ecosystem of the Yenisei river. Previously, uranium-238 at concentrations higher than the background ones was detected in water and sediment samples of the Yenisei River collected close to the discharge site of one of the Rosatom facilities (the Mining-and-Chemical Combine). However, radioecological studies of the Yenisei River ecosystem have not focused on uranium isotopes in aquatic organisms so far. The toxic effects of uranium on living organisms are known to be based on its both radioactive and chemical properties. We conducted a study on accumulation of uranium-238 in aquatic organisms at different trophic levels in the Yenisei River ecosystem between 2010 and 2013. We collected samples of aquatic moss (Fointinalis antipyretica), zoobenthos (Philolimnogammarus viridis and Ph. cyaneus), arctic grayling (Thymallus arcticus), and pike (Esox lucius) from the Yenisei region at a distance of 85-90 km downstream of Krasnoyarsk (5-10 km downstream of the radioactive discharge of the Mining-and-Chemical Combine). Data on samples are shown in Table 1. We determined uranium concentration in the samples of aquatic organisms by neutron activation analysis, in water - by ICP-MS (Table 2). The study shows that uranium can be effectively concentrated from water and accumulate in the biomass of all aquatic organisms used in experiments. The highest uranium concentration factors (CFs) were obtained for aquatic moss, and they were several times higher than the uranium CFs for zoobenthos and fish muscles. Based on the uranium concentration from water, all aquatic organisms of the Yenisei River used in this study can be ranked as follows: aquatic moss > gammarids > grayling = pike. No statistically significant difference has been found between uranium accumulation by fish of different trophic levels (Arctic grayling and pike). The uranium CFs obtained in this study is comparable with the literature data on the CFs of artificial radionuclides for aquatic moss and fish of the Yenisei River.
Keywords
коэффициент накопления,
трофическийуровень,
Fointinalis antipyretica,
Thymallus arcticus,
Philolimnogammarus viridis,
Philolimnogammarus cyaneus,
Esox lucius,
concentration factor,
trophic level,
Fointinalis antipyretica,
Thymallus arcticus,
Philolimnogammarus viridis,
Philolimnogammarus cyaneus,
Esox luciusAuthors
Bolsunovsky Alexander Y. | Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences | radecol@ibp.ru |
Trofimova Elena A. | Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences | e.trofimova11@yandex.ru |
Dementyev Dmitry V. | Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences | dementyev@gmail.com |
Karpov Anton D. | Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences | kasta_anton@mail.ru |
Всего: 4
References
Болсуновский А.Я., Жижаев А.М., Сапрыкин А.И., Дегерменджи А.Г., Рубайло А.И. Первые данные по содержанию урана в воде бассейна реки Енисей в зоне влияния предприятий Росатома // Доклады Академии наук. 2011. Т. 439, № 3. С. 383-388.
Болсуновский А.Я., Дегерменджи А.Г. Сравнение миграционной способности урана и техногенных радионуклидов в донных отложениях реки Енисей // Доклады Академии наук. 2013. Т. 448, № 5. С. 571-575.
Болсуновский А.Я., Суковатый А.Г. Радиоактивное загрязнение водных организмов реки Енисей в зоне влияния Горно-химического комбината // Радиационная биология. Радиоэкология. 2004. Т. 44, № 3. С. 361-366.
BolsunovskyA., BondarevaL. Actinides and other radionuclides in sediments and submerged plants of the Yenisei River // Journal of alloys and compounds. 2007. № 444-445. РР. 495499.
Зотина Т.А., Трофимова Е.А., Болсуновский А.Я., Анищенко О.В. Эффективность трофического переноса радиоактивных и стабильных изотопов металлов к рыбам-бентофагам р. Енисей // Journal of Siberian Federal University. Biology. 2013. Т. 6, № 1. С. 96-107.
Трофимова Е.А., Зотина Т.А., Дементьев Д.В., Болсуновский А.Я.Накопление техногенных радионуклидов хищными и мирными рыбами реки Енисей // Вопросы радиационной безопасности. 2014. № 4. С. 55-61.
Swanson S.M. Food-chain transfer of U-series radionuclides in a northern Saskatchewan aquatic system // Health physics. 1985. Vol. 49, № 5. РР. 747-770.
Kraemer L.D., Evans D. Uranium bioaccumulation in freshwater ecosystem: Impact of feeding ecology // Aquatic Toxicology. 2012. № 124-125. РР. 163-170.
Вышегородцев А.А., Скопцова Г.Н., Чупров С.М., Зуев И.В. Практикум по ихтиологии: учеб. пособие. Красноярск : КрасГУ, 2002. 127 с.
Bolsunovsky A. Artificial radionuclides in aquatic plants of the Yenisei river in the area affected by effluents of a Russian plutonium complex // Aquatic ecology. 2004. № 38. РР. 57-62.
Bolsunovsky A. Chemical Fraction of radionuclides and stabile elements in aquatic plants of the Yenisei River // Environmental science technology. 2011. № 45. РР. 7143-7150.
Pratas J., Favas P.J.C., Paulo C., Rodrigues N., Prasad M.N.V. Uranium accumulation by aquatic plants from uranium-contaminated water in central Portugal // International Journal of phytoremediation. 2012. № 14. РР. 221-234.
Favas P.J.C., Pratas J., Varun M., D'Souza R., Paul M.S. Accumulation of uranium by aquatic plants in field conditions: Prospects for phytoremediation // Science of the total environment. 2014. № 470-471. РР. 993-1002.
Zhou Q., Zhang J., Fu J., Shi J., Jiang G. Biomonitoring: an appealing tool of assessment of metal pollution in the aquatic ecosystem // Analytica chimica acta. 2008. № 606. РР. 135150.
Szefer P., Szefer K., Falandysz J. Uranium and thorium in muscle tissue of fish taken from the southern Baltic // Helgolander Meeresunters. 1990. № 44. РР. 31-38.
Pantelica A., Ene A., Georgescu I.I. Instrumental neutron activation analysis of some fish species from Danube River in Romania // Microchemical Journal. 2012. № 103. РЕ 142147.
SkipperudL., Stromman G., Yunusov M., StegnarP., Uralbekov B., Tilloboev H., Zjazjev G., Heier L.S., Rosseland B.O., Salbu B. Environmental impact assessment of radionuclides and metal contamination at the U sites Taboshar and Digmai, Tajikistan // Journal of Environmental Radioactivity. 2013. № 123. РР 50-62.
Stromman G., Rosseland B.O., Skipperud L., Burkibaev L.M., Uralbekov B., Heier L.S., Salbu B. Uranium activity ratio in water and fish from pit lakes in Kurday, Kazakhstan and Taboshar, Tajikistan // Journal of Environmental Radioactivity. 2013. № 123. РР 71-78.
Swanson S.M. Levels of 226Ra, 210Pb and total U in fish near a Saskatchewan uranium mine and mill // Health physics. 1983. Vol. 45, № 1. РР. 67-80.
Waite D.T. The effect of uranium mine tailings on radionuclide concentrations in Langley Bay, Saskatchewan, Canada // Arch. Environ. Contam. Toxicol. 1988. № 17. РР. 373-380.
Зотина Т.А., Трофимова Е.А., Болсуновский А.Я. Радионуклиды в хариусе сибирском на радиационно загрязнённом участке среднего течения р. Енисей // Радиационная биология. Радиоэкология. 2012. Т. 52, № 3. С. 305-311.
IAEA 1994, Handbook of parameter values for the prediction of radionuclide transfer in temperate environments // IAEA Technical Reports Series No. 364. International Atomic Energy Agency, IAEA, Austria, Vienna.