Toxigenic properties of mycotoxin-producing fungi | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2019. № 45 . DOI: 10.17223/19988591/45/1

Toxigenic properties of mycotoxin-producing fungi

Microscopic fungi that infect plants during the growing season and agricultural products during storage can get into food and animal feed and pollute them with their toxic metabolites - mycotoxins. The species composition and proportion of each species in the complex of fungi may vary with changes in growing or storage conditions, which is accompanied by changes in the spectrum of mycotoxins. In addition to known and controlled pollutants of this kind, the levels of previously unaccounted toxic fungal metabolites may increase, requiring a further study and assessment of the risk of their occurrence in food. The review is devoted to the consideration of fungi from the genera Fusarium, Aspergillus and Penicillium, whose representatives can produce mycotoxins both already regulated in plant products and predicted. The review also includes species Alternaria spp., the study of which revealed a frequent occurrence and a wide range of produced toxic metabolites, not yet normalized in food. Most mycotoxic fungi can multiply and accumulate toxic metabolites in a wide range of habitats of these microorganisms. We showed that microorganisms are extremely widespread in nature, and under favorable conditions with high humidity and optimal temperature (See Table 1) can affect various food products, animal feed and vegetable resources causing significant economic damage. Since it is difficult to identify toxin-producing fungi contaminating different substrates including food products and animal feed, mycotoxinology studies are conducted in accordance with a strict procedure including detection of species composition of fungi and their distribution by geographical zones, and determination of substrates contaminated with mycotoxins, as well as the composition of mycotoxins and the mechanism of their action on humans and animals. The paper presents data on the properties of toxigenic fungi of the genera Aspergillus, Alternaria, Fusarium and Penicillium, the most important from the point of view of food and animal feed safety. A special attention is paid to the problem of detecting producers of emerging mycotoxins among these fungi (See Table 2), which include fusaproliferin, beauvericin, enniatins, moniliformin, tenuazonic acid, tentoxin, alternariol and its methyl ether, mycophenolic acid, citrinin, fusaric acid, sterigmatocystin, emodin and asperglaucid (Gruber-Dorninger C et al., 2017, Jestoi M, 2008, Fraeyman S et al., 2017, Serrano AB, 2015). The review discusses the problems and prospects of applying the methods of DNA-identification of toxigenic fungi, touched upon in works of Gagkaeva TYu et al., 2017, Stakheev AA et al., 2018, Dupont J, 2010, Gromovykh TI et al., 2014, Rodr^guez A et al., 2011. We enumerate the difficulties that prevent a widespread introduction of PCR- diagnostics including the specifics of fungal DNA extraction, peculiarities of qualitative PCR for multinuclear cells of filamentous fungi, and the necessity to differentiate inactivated and viable mold forms. We showed that molecular methods of micromycete identification should be improved in order to search for target DNA sequences and markers which correlate with mycotoxigenic strains in the studied substrate. An important part of the research was to identify mycotoxin biosynthesis genes and evaluate their expression. Selection and improvement of DNA methods of food control for toxigenic fungi are needed for adequate risk evaluation of food contamination with mycotoxins, ensuring its safety and preventing mycotoxicosis. The paper contains 2 Tables and 81 References.

Download file
Counter downloads: 547

Keywords

микроскопические грибы, микотоксины, пищевые проДукты, Fusarium, Alternaria, Aspergillus, Penicillium, microscopic fungi, Fusarium, Alternaria, Aspergillus, Penicillium, mycotoxins, food products

Authors

NameOrganizationE-mail
Efimochkina Natalia R.Federal Research Center for Nutrition, Biotechnology and Food Safetykarlikanova@ion.ru
Sedova Irina B.Federal Research Center for Nutrition, Biotechnology and Food Safetyisedova1977@mail.ru
Sheveleva Svetlana A.Federal Research Center for Nutrition, Biotechnology and Food Safetysheveleva@ion.ru
Tutelyan Viktor A.Federal Research Center for Nutrition, Biotechnology and Food Safetytutelyan@ion.ru
Всего: 4

References

Тутельян В.А., Кравченко Л.В. Микотоксины (Медицинские и биологические аспекты). М. : Медицина, 1985. 320 с.
Покровский А.А., Кравченко Л.В., Тутельян В.А. Афлатоксины. М. : ВИНИТИ АН СССР. Токсикология. 1977. Т. 8. 107 с.
Билай В.И. Пидопличко Н.М. Токсинообразующие микроскопические грибы. Киев : Наукова думка, 1970. 291 с.
Cousin M.A., Riley R.T., Pestka G.G. Foodborne mycotoxins: chemistry, biology, ecology and toxicology // In: Foodborne Pathogens : Microbiology and Molecular Biology. 2005. UK, Caister Academic Press. 164 p.
Папуниди К.Х., Тремасов М.Я., Фисинин В.И., Никитин А.И., Семёнов Э.И. Микотоксины (в пищевой цепи). Издание второе, переработанное и дополненное. Казань : ФЦТРБ-ВНИВИ, 2017. 188 с.
Кравченко Л.В., Тутельян В.А. Биобезопасность. Микотоксины - природные контаминанты пищи // Вопросы питания. 2005. Т. 74, № 3. C. 3-13.
Alshannaq A., Yu J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food // Int. J. Environ. Res. Public Health. 2017. Vol. 14. P. 632.
Richard J.L. Some major mycotoxins and their mycotoxicoses - An overview // International Journal of Food Microbiology. 2007. Vol. 119. PP. 3-10.
Egmond H.P. van, Schothorst R.C., Jonker M.A. Regulations relating to mycotoxins in food // Analytical and Bioanalytical Chemistry. 2007. Vol. 389. PP. 147-157. doi: 10.1007/ s00216-007-1317-9
Gruber-Dorninger C., Novak B., Nagl V., Berthiller F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants // Journal of Agricultural and Food Chemistry. 2017. Vol. 65, № 33. PP. 7052-7070.
Marroquín-Cardona AG, Johnson NM, Phillips TD, Hayes AW. Mycotoxins in a changing global environment. Food and Chemistry Toxicology. 2014;69:220-230. doi: 10.1016/j.fct.2014.04.025
Medina A., Rodriguez A., Magan N. Climate change and mycotoxigenic fungi: impacts on mycotoxin production // Current Opinion in Food Science. 2015. Vol. 5. PP. 99-104. doi: https://doi.org/10.1016/j.cofs.2015.11.002
Jestoi M. Emerging Fusarium - Mycotoxins Fusaproliferin, Beauvericin, Enniatins, And Moniliformin - A Review // Critical Reviews in Food Science and Nutrition. 2008. Vol. 48, № 1. PP. 21-49. doi: http://dx.doi.org/10.1080/10408390601062021
Zinedine A., Fernandez-Franzon M., Manes J., Manyes L. Multi-mycotoxin contamination of couscous semolina commercialized in Morocco // Food Chemistry. 2017. Vol. 214. PP. 440-446.
Juan C., Covarelli L., Beccari G., Colasante V., Manes J. Simultaneous analysis of twenty-six mycotoxins in durum wheat grain from Italy // Food Control. 2016. Vol. 62. PP. 322-329.
Fraeyman S., Croubels S., Devreese M., Antonissen G. Emerging Fusarium and Alternaria Mycotoxins : Occurrence, Toxicity and Toxicokinetics // Toxins. 2017. Vol. 9. PP. 228-257. doi: https://doi.org/10.3390/toxins9070228
Serrano A.B., Capriotti A.L., Cavaliere C., Piovesana S., Samperi R., Ventura S., Lagana A. Development of a Rapid LC-MS/MS Method for the determination of emerging Fusarium mycotoxins enniatins and beauvericin in human biological fluids // Toxins. 2015. Vol. 7. PP. 3554-3571. doi: https://doi.org/10.3390/toxins7093554
Varga E., Wiesenberger G., Hametner C., Ward T.J., Dong Y, Schofbeck D., McCormick S., Broz K., Stuckler R., Schuhmacher R., Krska R., Kistler H.C., Berthiller F., Adam G. New tricks of an old enemy: isolates of Fusarium graminearum produce a type A trichothecene mycotoxin // Environ. Microbiol. 2015. Vol. 17. PP. 2588-2600. doi: http://dx.doi. org/10.1111/1462-2920.12718
Lofgren L., Riddle J., Dong Y., Kuhnem P.R., Cummings J.A., Del Ponte E.M., Bergstrom G.C., Kistler H.C. A high proportion of NX-2 genotype strains are found among Fusarium graminearum isolates from northeastern New York State // Eur. J. Plant Pathol. 2018. doi: https://doi: 10.1007/s10658-017-1314-6
O'Donnell K., Rooney A.P., Proctor R.H., Brown D.W., McCormick S.P., Ward T.J., Frandsen R.J.N., Rehner S.A. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria // Fungal Genetics and Biology. 2013. Vol. 52. PP. 20-31.
Leggieri M.C., Decontardi S., Bertuzzi T., Pietri A., Battilani P. Modeling growth and toxin production of toxigenic fungi signaled in cheese under different temperature and water activity regimes // Toxins. 2017. Vol. 9, № 1. PP. 4-21.
Perrone G., Gallo A., Susca A. Aspergillus // In: Molecular Detection of Foodborne Pathogens, edited by Dongyou L., CRC Press, Taylor & Francis Group, USA. 2010. 879 р.
Levasseur-Garcia C. Updated Overview of Infrared Spectroscopy Methods for Detecting Mycotoxins on Cereals (Corn, Wheat, and Barley) // Toxins. 2018. Vol. 10, № 1. PP. 3-51. doi: 10.3390/toxins10010038
Mayer Z., Bagnara A., Farber P., Geisen R. Quantification of the copy number of nor-1, a gene of the aflatoxin biosynthetic pathway by real-time PCR, and its correlation to the cfu of Aspergillus flavus in foods // International Journal of Food Microbiology. 2003. Vol. 82, № 2. PP. 143-151.
Mayer Z., Farber P., Geisen R. Monitoring the production of aflatoxin B1 in wheat by measuring the concentration of nor-1 mRNA // Applied and Environmental Microbiology. 2003. Vol. 69, № 2. PP. 1154-1158.
European Food Safety Authority. EFSA on Contaminants in the Food Chain (CONTAM): Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food // EFSA Journal. 2011. Vol. 9, № 10. PP. 2407-2504. doi: doi.org/10.2903/j.efsa.2011.2407. URL: www.efsa.europa.eu/efsajournal.
Liu D. Pruett S.B., Coyne C. Alternaria // In: Molecular Detection of Foodborne Pathogens, edited by Dongyou L., CRC Press, Taylor & Francis Group. USA. 2010. 879 p.
Ганнибал Ф.Б. Виды рода Alternaria, обнаруженные в России и на некоторых соседних территориях // Микология и фитопатология. 2015. Т. 49, № 6. C. 374-385.
Solfrizzo M. Recent advances on Alternaria mycotoxins // Current Opinion in Food Science. 2017. Vol. 17. PP. 57-61. doi: https://doi.org/10.1016/j.cofs.2017.09.012
Muller M.E.H., Korn U. Alternaria mycotoxins in wheat - A 10 years survey in the Northeast of Germany // Food Control. 2013. Vol. 34, № 1. PP. 191-197.
Romano C., Vanzi L., Massi D., Difonzo E.M. Subcutaneous alternariosis // Mycoses. 2005. Vol. 48, № 6. PP. 408-412.
Robertshaw H., Higgins E. Cutaneous infection with Alternaria tenuissima in an immunocompromised patient // British Journal of Dermatology. 2005. Vol. 153, № 5. PP. 1047-1049.
Sood N., Gugnani H.C., Guarro J., Palival-Joshi A., Vijayan V.K. Subcutaneous phaeohyphomycosis caused by Alternaria alternata in an immunocompetent patient // International Journal of Dermatology. 2007. Vol. 46, № 4. PP. 412-413. doi: https://doi. org/10.1111/j.1365-4632.2006.03053.x
Lopez P., Venema D., Rijk T., Kok A., Scholten J.M., Hans G.J., Nijs M.M. Occurrence of Alternaria toxins in food products in the Netherlands // Food Control. 2016. Vol. 60. PP. 196-204.
Hickert S., Bergmann M., Ersen S., Cramer B., Hump H.-U. Survey of Alternaria toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach // Mycotoxin Research. 2016. Vol. 32, № 1. PP. 7-18.
Walravens J., Micula H., Rychlik M., Asam S., Devos T., Ediage E.N., Mavungu J.D.D., Jacxsens L., Van Landschoot A., Vanhaecke L., De Saeger S. Validated UPLC-MS/MS methods to quantitate free and conjugated Alternaria toxins in commercially available tomato products and fruit and vegetable juices in Belgium // Journal of Agricultural and Food Chemistry. 2016. Vol. 64, № 24. PP. 5101-5109. doi: http://doi: 10.1021/acs. jafc.6b01029
Iram S., Ahmad I. Analysis of variation in Alternaria alternata by pathogenicity and RAPD study // Polish Journal of Microbiology. 2005. Vol. 54, № 1. PP. 13-19.
Andersen B., Smedsgaard J., J0rring I., Skouboe P., Pedersen L.H. Real-time PCR quantification of the AM-toxin gene and HPLC qualification of toxigenic metabolites from Alternaria species from apples // Int. J. Food Microbiol. 2006. Vol. 111, № 2. PP. 105-111.
Технический регламент Таможенного союза «О безопасности пищевых добавок, ароматизаторов и технологических вспомогательных средств» (ТР ТС 029/2012). URL: http://www.eurasiancommission.org/ru/act/texnreg/deptexreg/tr/Documents/P_58.pdf
Andersen B., Thrane U. Foodborne fungi in fruit and cereals and their production of mycotoxins // Advances in Food Mycology. N.Y., 2006. PP. 137-152.
Воробьев А.А. Микробиология и иммунология / под ред. А.А. Воробьева. М. : Медицина, 1999. 464 с.
Varga J., Juhasz A., Kevei F., Kozakiewich Z. Molecular diversity of agriculturally important Aspergillus species // European Journal of Plant Pathology. 2004. Vol. 110. PP. 627-640.
Kensler T.W., Roebuck B.D., Wogan G.N., Groopman J.D. Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology // Toxicology Sciences. 2011. Vol. 120. Suppl. 1 PP. 28-48.
Седова И.Б., Захарова Л.П., Киселева М.Г., Чалый З.А., Тутельян В.А. Фузариотоксины и афлатоксин В1 в продовольственном зерне кукурузы в Российской Федерации // Научные труды Северо-Кавказского федерального научного центра садоводства, виноградарства, виноделия. 2018. Т. 21. С. 129-137.
RASFF Annual Report 2016, European Union, 2017. 64 р. URL: https://ec.europa.eu/food/ sites/food/files/safety/docs/rasff_annual_report_2016.pdf
RASFF Preliminary Annual Report 2017, European Union, 2018. 58 p. URL: https:// ec.europa.eu/food/sites/food/files/safety/docs/rasff_annual_report_2017.pdf
Gul O., Dervisoglu M. Occurrence of Aflatoxin M1 in vacuum packed kashar cheeses in Turkey // International Journal of Food Properties. 2014. Vol. 17, № 2. PP. 273-282. doi: http://dx.doi.org/10.1080/10942912.2011.631247
Taniwaki M.H., Dender A.G.F. van. Occurrence of toxigenic molds in Brazilian cheeses // Journal of Food Protection. 1992. Vol. 55, № 3. PP. 187-191.
Malir F., Ostry V., Pfohl-Leszkowicz A., Malir J., Jakub T. Ochratoxin A: 50 Years of Research // Toxins. 2016. Vol. 8, № 7. P. 191. doi: http://doi:10.3390/toxins8070191
Седова И.Б., Киселева М.Г., Чалый З.А., Аксенов И.В., Захарова Л.П., Тутельян В.А. Анализ результатов мониторинга загрязнения микотоксинами продовольственного зерна урожаев 2005-2016 гг. // Успехи медицинской микологии. 2018. Т. 19. С. 329-330.
Аксенов И.В. Изучение содержания микотоксина охратоксина А в виноградных винах // Вопросы питания. 2018. Т. 87, № 5. Приложение. С. 174.
European Food Safety Authority. Opinion of the Scientific panel on contaminants in the Food Chain of the EFSA on the request from the Commission related to ochratoxin A in food // EFSA Journal. 2006. Vol. 365. PP. 1-56.
Morello L.G., Sartori D., Oliveiro Martinez A.L. de, Vieira M.L.C., Taniwaki M.H., Pelegrinelli Fungaro M.H. Detection and quantification of Aspergillus westerdijkiae in coffee beans based on selective amplification of β-tubulin gene by using real-time PCR // International Journal of Food Microbiology. 2007. Vol. 119, № 3. PP. 270-276.
Sartori D., Furlaneto M.C., Martins M.K., Ferreira de Paula M.R., Pizzirani-Kleiner A.A., Taniwaki M.H., Pelegrinelli Fungaro M.H. PC method for the detection of potential ochratoxin-producing Aspergillus species in coffee beans // Research in Microbiology. 2006. Vol. 157, № 4. PP. 350-354. doi: https://doi.org/10.1016/j.resmic.2005.09.008
Стахеев А.А., Самохвалова Л.В., Рязанцев Д.Ю., Завриев С.К. Молекулярно генетические методы в исследовании таксономии и специфической идентификации токсинпродуцирующих грибов рода Fusarium: успехи и проблемы // Сельскохозяйственная биология. 2016. Т. 51, № 3. C. 275-284.
Stakheev A.A., Ryazantsev D.Yu., Gagkaeva T.Yu., Zavriev S.K. PCR detection of Fusarium fungi with similar profiles of the produced mycotoxins // Food Control. 2011. Vol. 22. PP. 462-468.
Waalwijk C. Quantitative detection of Fusarium spp. and its correlation with fumonisin content in maize from South African subsistence farmers // World Mycotoxin Journal. 2008. Vol. 1, № 1. PP. 39-47.
Минаева Л.П., Короткевич Ю.В., Захарова Л.П., Седова И.Б., Шевелева С.А. Прямое определение продуцентов Т-2 и НТ-2 микотоксинов - грибов рода Fusarium в продовольственном зерне методом ПЦР (Сообщение 2) // Вопросы питания. 2013. Т. 82, № 4. C. 48-54.
Moss M.O., Thrane U. Fusarium taxonomy with relation to trichothecene formation // Toxicology Letters. 2004. Vol. 153. PP 23-28.
Соколова Г.Д. Внутривидовое разнообразие фитопатогенного гриба Fusarium graminearum // Микология и фитопатология. 2015. Т. 49, № 2. C. 71-79.
Gale L.R., Harrison S.A., Ward T.J., O'Donnell K., Milus E.A., Gale S.W., Kistler H.C. Nivalenol-type populations of Fusarium graminearum and F. asiaticum are prevalent on wheat in Southern Louisiana // Phytopathology. 2011. Vol. 101. PP. 124-134.
Kongkapan J., Polapothep A., Owen H. and Giorgi M. A brief overview of our current understanding of nivalenol: A growing potential danger yet to be fully investigated // Israel Journal of Veterinary Medicine. 2016. Vol. 71, № 1. PP. 3-9.
Vanheule A., De Boevre M., Moretti A., Scauflaire J., Munaut F., De Saeger S., Bekaert B., Haesaert G., Waalwijk C., van der Lee T., Audenaert K. Genetic Divergence and Chemotype Diversity in the Fusarium Head Blight Pathogen Fusarium poae // Toxins. 2017. Vol. 9, № 9. E255.
Kelly A., Proctor R.H., Belzile F., Chulze S.N., Clear R.M., Cowger C., Elmer W., Lee T., Obanor F., Waalwijk C., Ward T.J. The geographic distribution and complex evolutionary history of the NX-2 trichothecene chemotype from Fusarium graminearum // Fungal Genet. Biol. 2016. Vol. 95. PP. 39-48. doi: http://dx.doi.org/10.1016/j.fgb.2016.08.003
SCOOP Task 3.2.10, 2003 Collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU Member States http://europa.eu/int/ comm./food/fs/scoop/task3210.pdf.; Scientific Committee on Food, 2005. Opinion on Fusarium Toxins, Part 5: T-2 toxin and HT-2 toxin. URL: http://europa.eu.int/comm./food/ fs/sc/out88-en.pdf
Ferrigo D., Raiola A., Causin R. Fusarium toxins in cereals: occurrence, legislation, factors promoting the appearance and their management // Molecules. 2016. Vol. 21, № 5. E627.
Shi W., Tan Y., Wang S., Gardiner D.M., De Saeger S., Liao Y., Wang C., Fan Y., Wang Z., Wu A. Mycotoxigenic potentials of Fusarium species in various culture matrices revealed by mycotoxin profiling // Toxins. 2017. Vol. 9, № 6. E6. doi: 10.3390/toxins9010006
Gavrilova O., Skritnika A., Gagkaeva T. Identification and characterization of spontaneous auxotrophic mutants in Fusarium langsethiae // Microorganisms. 2017. Vol. 5. Е14. doi: 10.3390/microorganisms502001
Stakheev A., Khairulina D.R., Zavriev S.K. Four-locus phylogeny of Fusarium avenaceum and related species and their species-specific identification based on partial phosphate permease gene sequences // Int. J. Food Microbiol. 2016. Vol. 225. PP. 27-37.
Минаева Л.П., Короткевич Ю.В., Шевелева С.А. Ускоренный метод определения зараженности продовольственного зерна грибами рода Fusarium и их видовой идентификации (Сообщение 1) // Вопросы питания. 2013. T. 82, № 3. C. 61-66.
Гагкаева Т.Ю., Гаврилова О.П., Орина А.С., Казарцев И.А., Ганнибал Ф.Б. Сравнение методов выявления в зерне токсинопродуцирующих грибов рода Fusarium // Микология и фитопатология. 2017. T. 51, № 5. C. 292-298.
Стахеев А.А., Звездина Ю.К., Микитюк О.Д., Завриев С.К. Изучение токсинообразования и полиморфизма трихотеценовых генов у грибов рода Fusarium российских коллекций // Успехи медицинской микологии. 2018. T. 19. C. 337-343.
Dupont J. Penicillium // Molecular Detection of Foodborne Pathogens, edited by Dongyou L., CRC Press. Taylor & Francis Group, USA. 2010. 879 р.
Громовых Т.И., Кузнецова Л.С., Жилинская Н.В., Лушина К.В. Оценка фунгицидной активности штаммов базидиомицетов в отношении индукторов плесневения пищевых продуктов грибами из рода Penicillium Link // Проблемы медицинской микологии. 2014. T. 16, № 1. С. 40-45.
Кузнецова Л.С., Михеева Н.В., Казакова Е.В., Озерская С.М., Иванушкина Н.Е. Состав плесневых грибов, поражающих поверхность мясной продукции // Мясная индустрия. 2009. № 3. C. 28-30.
Torovic L., Dimitrov N. Lopes A., Martins C., Alvito P., Assuneao R. Patulin in fruit juices: occurrence, bioaccessibility, and risk assessment for Serbian population // Food Additives & Contaminants: Part A. 2018. Vol. 35, № 5. PP. 985-995. doi: https://doi.org/10.1080/19 440049.2017.1419580
Ratnasingham S., Hebert P.D. BOLD: The Barcode of Life Data System // Molecular Ecology Notes. 2007. Vol. 7, № 3. PP. 335-364.
Luque M.I., Cordoba J.J., Rodnguez A., Nunez F., Andrade M.A. Development of a PCR protocol to detect ochratoxin A producing moulds in food products // Food Control. 2013. Vol. 29, № 1. PP. 270-278. doi: https://doi.org/10.1016/j.foodcont.2012.06.023
Paterson R.R. Identification and quantification of mycotoxigenic fungi by PCR // Process Biochemistry. 2006. Vol. 41, № 7. PP. 1467-1474.
Atoui A., Khoury A.I., Kallassy M., Lebrihi A. Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize / / International Journal of Food Microbiology. 2012. Vol. 154, № 1-2. PP. 59-65.
Rodríguez A, Rodríguez M, Luque MI, Justesen AF, Córdoba JJ. Quantification of ochratoxin A-producing molds in food products by SYBR Green and TaqMan real-time PCR methods. Int J Food Microbiology. 2011;149(3):226-235. doi: 10.1016/j.ijfoodmicro.2011.06.019
 Toxigenic properties of mycotoxin-producing fungi | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2019. №  45 . DOI:  10.17223/19988591/45/1

Toxigenic properties of mycotoxin-producing fungi | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2019. № 45 . DOI: 10.17223/19988591/45/1

Download full-text version
Counter downloads: 1422