Modern approaches to modeling plant diversity and spatial distribution of plant species: Implication prospects in Russia
What determines patterns in species richness is one of the oldest unresolved questions in biology, which attached increasingly more attention of ecologists under climate change and human impacts on ecosystems. The mechanisms of the decrease in species richness from the equators to the poles have intrigued ecologists since the era of von Humboldt, Wallace, and Darwin (Brown, Lomolino, 1998). Nowadays, studies on plant diversity modeling and spatial distribution of plant species are on the edge of modern biological and ecological research. The basic idea of the given review is to summarize the key points of modern methodology and methods of the discussed topic. Firstly, the main directions of studies on latitudinal diversity gradient (i.e., the decrease in species diversity with latitude) as freezing-tolerance hypothesis (or tropical conservatism hypothesis) and niche conservatism hypothesis have been discussed. It is mentioned that understanding the latitudinal gradient in species diversity has been one of the central questions in biology for two centuries, and yet it remains a major challenge to biologists. Analysis of recent publications unfolds that this problem still remains controversial. Compiling new datasets for species distribution and their ensembles along latitudinal gradient and complex analysis by new methods will be useful for future studies. Secondly, modern approaches to species distribution modeling (SDM) have been analyzed. In the past decade, the number of publications on that topic rapidly increased (See Table 1). Publication analysis concerning studies on habitat suitability modeling (HSM) or species distribution modeling (SDM) revealed poor involvement (less than 1%) of Russian scientists in the discussed topic. The importance of using high-quality data of species occurrences and valid modeling approaches to get reliable results and prognostic maps has been highlighted (See Tables 2-4). It is marked that today different algorithms can be applicable in R, which provides many useful tools for SDM, such as Biomod2 platform and other specific packages. Brief practical rules for good SDM practice have been presented. For beginners, information on training manuals, the main books and papers, describing SDM methods is provided. In the third part of the review, previous studies on plant geography in Russia have been analyzed. The baseline of these studies is very important and a brief overview shows good perspectives. It is necessary to point out that previously obtained data on plant species distribution can be used in modern research and be successfully involved in the modeling of plant diversity and species distribution (See Fig. 1 and 2). Different kinds of available data (point, contour, grid mapping, floristic species lists, and releves) have been reviewed. There are a lot of elaborated databases on plant species distribution in Russia, but most of them are not available online and do not have free access to data. The first overview on Russian plant diversity revealed that some territories, such as the European part of Russia, were investigated quite well. Plant species distribution data for the north-eastern part of Russia have low resolution and more botanical studies necessary for that region. Analysis of modern Russian botanical publications revealed an increase in studies on creating new databases on plants and vegetation, herbaria digitizing, and publishing species occurrences data online, mostly on the Global Biodiversity Information Facility (GBIF) platform (http://gbif.ru/). Studies on the base SDM methodology are not common, and mostly single species or plant group distribution are analyzed. There is a lack of research covering plant diversity for the whole territory of Russia and big regions within the country. Such studies for the Asian part of Russia become more and more important. Russian GBIF team usually organizes conferences, workshops and training courses which are helpful in promoting SDM studies in Russia. Development of such research will give an opportunity for detailed analysis of unique plants and vegetation in Northern Eurasia, and a better understanding of the main patterns of plant diversity in Russia, will help to estimate the distribution dynamics of species and plant communities under climate change and human impact processes and will elaborate practical tools for conservation of rare and endangered plant species. The paper contains 2 Figures, 4 Tables and 106 References. Acknowledgments: The author expresses gratitude to Prof. NE Zimmermann (WSL), Prof. Zhiheng Wang and Xiangyan Su (Peking University) for discussion of the main ideas and help with analyzing the data.
Keywords
databases,
species distribution modeling,
species richness,
latitudinal diversity gradient,
plant geography,
базы данных,
видовое богатство,
моделирование распространения видов,
широтный градиент разнообразия,
география растенийAuthors
Sandanov Denis V. | Institute of General and Experimental Biology, Siberian Branch of the Russian Academy of Sciences | sdenis1178@mail.ru |
Всего: 1
References
Sandanov D.V., Pisarenko O.Yu. Bioclimatic modeling of Crossidium squamiferum (Viv.) Jur. (Pottiaceae, Bryophyta) distribution // Arctoa. 2018. Vol. 27. P. 29-34.
Гудкова П.Д., Олонова М.В., Феоктистов Д.С. Сравнение эколого-климатических ниш двух видов ковылей - Stipa sareptana A.K. Becker и S. krylovii Roshev. (Poaceae) // Ukrainian Journal of Ecology. 2017. Т. 7 (4). С. 263-269.
Солодянкина С.В., Истомина Е.А., Сороковой А.А., Чепинога В.В. Моделирование потенциального ареала ветреницы байкальской (Anemone baicalensis, Ranunculaceae) в Байкальском регионе // География и природные ресурсы. 2016. № 5. С. 92-99.
Дудов С.В. Моделирование распространения видов по данным рельефа и дистанционного зондирования на примере сосудистых растений нижнего горного пояса хр. Тукурингра (Зейский заповедник, Амурская область) // Журнал общей биологии. 2016. Т. 77, № 2. С. 122-134.
Санданов Д.В., Найданов Б.Б. Пространственное моделирование ареалов восточноазиатских видов растений: современное состояние и динамика под влиянием климатических изменений // Растительный мир Азиатской России. 2015. № 3 (19). С. 30-35.
Korolyuk A.Yu., Zverev A.A. Database of Siberian Vegetation (DSV) // Biodiversity & Ecology. 2012. Vol. 4. P. 312.
Chepinoga VV Wetland vegetation database of Baikal Siberia (WETBS) // Biodiversity & Ecology. 2012. Vol. 4. P. 311.
Науменко Н.И. Флористическое районирование Южного Зауралья // Вестник Санкт-Петербургского университета. 2004. Сер. 3. № 1. С. 69-90.
Баранова О.Г. Сравнительный анализ локальных флор Вятско-Камского междуречья // Развитие сравнительной флористики в России: вклад школы А.И. Толмачева : материалы VI Рабочего совещания по сравнительной флористике / под ред. С.В. Дегтевой. Сыктывкар, 2004. С. 25-30.
Королева Т.М., Зверев А.А., Катенин А.Е., Петровский В.В., Поспелова Е.Б., Ребристая О.В., Секретарева Н.А., Ходачек Е.А., Хитун О.В., Чиненко С.В., Современные подходы к моделированию разнообразия видов растений 105 Юрцев Б.А. Долготная географическая структура локальных и региональных флор Азиатской Арктики // Ботанический журнал. 2008. Т. 93, № 2. С. 193-220.
Юрцев Б.А., Зверев А.А., Катенин А.Е., Королева Т.М., Петровский В.В., Ребристая О.В., Секретарева Н.А., Хитун О.В., Ходачек Е.А. Пространственная структура видового разнообразия локальных и региональных флор Азиатской Арктики // Ботанический журнал. 2004. Т. 89, № 11. С. 1689-1727.
Юрцев Б.А., Зверев А.А., Катенин А.Е., Королева Т.М., Кучеров И.Б., Петровский В.В., Ребристая О.В., Секретарева Н.А., Хитун О.В., Ходачек Е.А. Градиенты таксономических параметров локальных и региональных флор Азиатской Арктики (в сети пунктов мониторинга биоразнообразия) // Ботанический журнал. 2002. Т. 87, № 6. С. 1-28.
Liu Y., Su X., Shrestha N., Wang S., Xu X., Li Y., Wang Q., Sandanov D., Wang Z. Effects of contemporary environment and Quaternary climate change on dryland plant diversity differ between growth forms // Ecography. 2019. Vol. 42. PP. 334-345.
Su X., Wang Z., Sandanov D.V. Tropical niche conservatism and glacial-interglacial climate change shaped woody plant diversity in eastern Asia // Macroecology in Space and Time: 10th Annual Meeting of the Specialist Group on Macroecology of the Ecological Society of Germany, Austria, and Switzerland. Vienna, 2017. P. 17.
Araujo M.B., Nogues-Bravo D., Diniz-Filho J.A.F., Haywood A.M., Valdes P. J., Rahbek C. Quaternary climate changes explain diversity among reptiles and amphibians // Ecography. 2008. Vol. 31, № 1. PP. 8-15.
Venevsky S., Venevskaia I. Hierarchical systematic conservation planning at the national level: Identifying national biodiversity hotspots using abiotic factors in Russia // Biological Conservation. 2005. Vol. 124. PP. 235-251.
Коропачинский И.Ю., Встовская Т.Н. Древесные растения Азиатской России. Новосибирск : Гео, 2002. 707 с.
Санданов Д.В., Wang Z., Su X. База данных по распространению древесных растений Восточной Евразии: возможности и перспективы // Проблемы изучения и сохранения растительного мира Евразии : материалы II Всерос. конф. с участием иностранных ученых. Иркутск, 2017. С. 179-181.
Флора Путорана (Материалы к познанию особенностей состава и генезиса горных субарктических флор Сибири). Новосибирск : Наука, 1976. 245 с.
Серегин А.П. Сеточное картирование флоры: мировой опыт и современные тенденции // Вестник Тверского государственного университета. Сер. Биология и экология. 2013. Вып. 32. С. 210-245.
Дудов С.В., Дудова К.В., Гамова Н.С. Исследование ботанико-географических рубежей в российской части бассейна р. Амур путем моделирования пространственного распространения видов сосудистых растений // Использование современных информационных технологий в ботанических исследованиях : тезисы докл. междунар. науч.-практ. конф. / под ред. Е.А. Боровичева, Д.А. Давыдова, Н.Е. Королевой. Апатиты, 2017. С. 41-44.
Серегин А.П. Цифровой гербарий МГУ - крупнейшая российская база данных по биоразнообразию // Известия академии наук. Серия биологическая. 2017. № 6. С. 610-616.
Morozova O.V. East Asian species in alien flora of European Russia // Botanica Pacifica. 2014. Vol. 3, № 1. PP. 21-31.
Морозова О.В., Борисов М.М. Веб-ориентированная геоинформационная система по чужеродным видам растений Европейской России // Российский журнал биологических инвазий. 2010. Т. 3, № 2. С. 47-55.
Морозова О.В. База данных по адвентивным видам растений (Alien plant species) // Материалы совещания по экологической безопасности России. М. : IUCN, 2002. C. 83-94.
Афонин А.Н., Грин С.Л., Дзюбенко Н.И., Фролов А.Н. (ред.) Агроэкологический атлас России и сопредельных стран: экономически значимые растения, их вредители, болезни и сорные растения [DVD-версия]. 2008. URL: http://www.agroatlas.ru
Ареалы деревьев и кустарников СССР / С.Я. Соколов, О.А. Связева, В.А. Кубли ; под ред. В.И. Грубова. Л. : Наука, 1986. 182 с.
Ареалы деревьев и кустарников СССР / С.Я. Соколов, О.А. Связева, В.А. Кубли ; под ред. В.И. Грубова. Л. : Наука, 1980. 144 с.
Атлас ареалов и ресурсов лекарственных растений СССР / под ред. П.С. Чикова. М.: Картография, 1983. 340 с.
Ареалы деревьев и кустарников СССР / С.Я. Соколов, О.А. Связева, В.А. Кубли ; под ред. В.И. Грубова. Л. : Наука, 1977. 164 с.
Ареалы растений флоры СССР / под ред. А.И. Толмачева. Л. : Изд-во Ленингр. ун-та, 1976. Вып. 3. 176 с.
Ареалы растений флоры СССР / под ред. А.И. Толмачева. Л. : Изд-во Ленингр. ун-та, 1965. 191 с.
Ареалы растений флоры СССР / под ред. А.И. Толмачева. Л.: Изд-во Ленингр. ун-та, 1969. Вып. 2. 248 с.
Чепинога В.В., Петухин В.А., Стальмакова Д.П. Результаты сеточного картирования сводки «Флора Центральной Сибири» (1979) в цифровом формате: итоги и перспективы использования // Растительный мир Азиатской России. 2017. № 3 (27). С. 70-78.
Толмачев А.И. Введение в географию растений. Л. : Изд-во Ленингр. ун-та, 1974. 244 с.
Толмачев А.И. От редактора // Ареалы растений флоры СССР. Л. : Изд-во Ленингр. унта, 1965. С. 3-8.
Shcheglovitova M., Anderson R.P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes // Ecological Modelling. 2013. Vol. 269. PP. 9-17.
Breiner F.T., Nobis M.P., Bergamini A., Guisan A. Optimizing ensembles of small models for predicting the distribution of species with few occurrences // Methods in Ecology and Evolution. 2017. Vol. 9, № 4. PP. 802-808.
Chapman D.S. Weak climatic associations among British plant distributions // Global Ecology and Biogeography. 2010. Vol. 19. PP. 831-841.
Segurado P., Araujo M.B., Kunin W.E. Consequences of spatial autocorrelation for nichebased models // Journal of Applied Ecology. 2006. Vol. 43. PP. 433-444.
Афонин А.Н., Соколова Ю.В. Эколого-географический анализ и моделирование распространения биологических объектов с использованием ГИС. СПб. : Изд-во ВВМ, 2018. 121 с.
Олонова М.В., Гудкова П.Д. Биоклиматическое моделирование: задания для практической работы и методические указания к их выполнению. Томск : Издательский дом ТГУ, 2017. 50 с.
Thuiller W., Lafourcade B., Engler R., Araujo M.B. BIOMOD - a platform for ensemble forecasting of species distributions // Ecography. 2009. Vol. 32. P. 369-373.
Broennimann O., Di Cola V., Petitpierre B., Breiner F., Scherrer D., Manuela D., Randin C., Engler R., Hordijk W., Mod H., Pottier J., Di Febbraro M., Pellissier L., Pio D., Mateo R.G., Dubuis A., Maiorano L., Psomas A., Ndiribe C., Salamin N., Zimmermann N., Guisan A. Package ‘ecospat'. June 27, 2018 http://mirrors.nic.cz/R/web/packages/ecospat/ecospat.pdf
Олонова М.В., Gao X. Потенциальные возможности распространения адвентивного растения Poa compressa L. в Сибири // Вестник Томского государственного университета. Биология. 2014. № 4 (28). С. 56-69.
Пузаченко Ю.Г., Желтухин А.С., Сандлерский Р.Б. Анализ пространственновременной динамики экологической ниши на примере популяции лесной куницы (Martes martes) // Журнал общей биологии. 2010. Т. 71, № 6. С. 467-487.
Zizka A., Silvestro D., Andermann T., Azevedo J., Ritter C.D., Edler D., Farooq H., Herdean A., Ariza M., Scharn R., Svanteson S., Wengstrom N., Zizka V., Antonelli A. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases // Methods in Ecology and Evolution. 2019. Vol. 10. PP. 744-751. https://doi. org/10.1111/2041-210X.13152 Современные подходы к моделированию разнообразия видов растений 103
Brown J.L., Bennett J.R., French C.M. SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses // PeerJ. 2017. 5, e4095. https://doi.org/10.7717/peerj.4095
Serra-Diaz J.M., Enquist B.J., Maitner B., Merow C., Svenning J.-C. Big data of tree species distributions: how big and how good? // Forest Ecosystems. 2017. 4:30. https://doi. org/10.1186/s40663-017-0120-0
Velazco S.J.E., Galvao F., Villalobos F., De Marco Junoir P. Using worldwide edaphic data to model plant species niches: An assessment at a continental extent // PLoS ONE. 2017. 12(10): e0186025. https://doi.org/10.1371/journal.pone.0186025
Rohr R.P., Naisbit R.E., Massa C., Bersier L.-F. Matching-centrality decomposition and the forecasting of new links in networks // Proceedings of the Royal Society B. Biological Sciences. 2016. Vol. 283. PP. 20152702.
Pellissier L., Niculita-Hirzel H., Dubuis A., Pagni M., Guez N., Ndiribe C., Salamin N., Xenarios I., Goudet J., Sanders I.R., Guisan A. Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps // Molecular Ecology. 2014. Vol. 23. PP. 4274-4290.
Le Roux P.C., Pellissier L., Witz M.S., Luoto M. Incorporating dominant species as proxies for biotic interactions strengthens plant community models // Journal of Ecology. 2014. Vol. 102. PP. 767-775.
Wisz M.S., Pottier J., Kissling W.D., Pellissier L.and all The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modeling // Biological Reviews. 2013. Vol. 88. PP. 15-30.
Buisson L., Thuiller W., Casajus N., Lek S., Grenouillet G. Uncertainty in ensemble forecasting of species distribution // Global Change Biology. 2010. Vol. 16. PP. 1145-1157.
Wang T., Campbell E.M., O'Neill G.A., Aitken S.N. Projecting future distributions of ecosystem climate niches: uncertainties and management applications // Forest Ecology and Management. 2012. Vol. 279. PP. 128-140.
Thuiller W., Albert C., Araujo M.B., Berry P.M., Cabeza M., Guisan A., Hickler T., Midgely G.F., Paterson J., Schurr F.M., Sykes M.T., Zimmermann N.E. Predicting global change impacts on plant species' distributions: Future challenges // Perspectives in Plant Ecology Evolution and Systematics. 2008. Vol. 9. PP. 137-152.
Araujo M.B., Guisan A. Five (or so) challenges for species distribution modelling // Journal of Biogeography. 2006. Vol. 33. PP. 1677-1688.
Guisan A., Thuiller W., Zimmermann N.E. Habitat suitability and distribution models: with application in R. Cambridge: Cambridge University Press, 2017. doi: 10.1017/9781139028271
Elith J., Leathwick J.R. Species distribution models: Ecological explanation and prediction across space and time // Annual Review of Ecology, Evolution, and Systematics. 2009. Vol. 40. PP. 677-697.
Thuiller W., Pironon S., Psomas A., Barbet-Massin M., Jiguet F., Lavergne S., Pearman P.B., Renaud J., Zupan L., Zimmermann N.E. The European functional tree of bird life in the face of global change // Nature Communications. 2014. Vol. 5, № 3118.
Kremen C., Cameron A., Moilanen A., Philips S.J., Thomas C.D., Beentje H., Dransfield J., Fischer B.L., Glaw F., Good T.C., Harper G.J., Hijmans R.J., Lees D.C., Louis Jr. E., Nussbaum R.A., Raxworthy C.J., Razafimpahanana A., Schatz G.E., Vences M.,Vieites D.R., Wright P.C., Zjhra M.L. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools // Science. 2008. Vol. 320. PP. 222-226.
Thuiller W., Pollock L.J., Gueguen M., Munkemuller T. From species distributions to metacommunities // Ecology Letters. 2015. Vol. 18. PP. 1321-1328.
Meier E.S., Edwards Jr T.C., Kienast F., Dobbertin M., Zimmermann N.E. Co-occurrence patterns of tress along macro-climatic gradients and their potential influence on the present and future distribution of Fagus sylvatica L. // Journal of Biogeography. 2011. Vol. 38. PP. 371-382.
Guisan A., Thuiller W. Predicting species distribution: offering more than simple habitat models // Ecological Letters. 2005. Vol. 8. PP. 993-1009.
Guisan A., Zimmermann N.E. Predictive habitat distribution models in ecology // Ecological Modelling. 2000. Vol. 135. PP. 147-186.
Kinlock N.L., Prowant L., Herstoff E.M., Foley C.M., Akin-Fajiye M., Bender N., Umarani M., Ryu H.Y., Sen B., Gurevich J. Explaining global variation in the latitudinal diversity gradient: Meta-analysis confirms known patterns and uncovers new ones // Global Ecology and Biogeography. 2018. Vol. 27. PP. 125-141.
Ширяев А.Г. Широтные изменения разнообразия грибов на модельной трансекте Евразии // Известия Российской академии наук. Серия географическая. 2018. № 3. С. 56-66.
Gaucherel C., Tramier C., Devictor V, Svenning J.-C., Hely C. Where and at which scales does the latitudinal diversity gradient fail? // Journal of Biogeography. 2018. Vol. 45. PP. 1905-1916.
Chen S.-B., Ferry Slik J.W., Gao J., Mao L.-F., Bi M.-J., Shen M.-W., Zhou K.-X. Latitudinal diversity gradients in bryophytes and woody plants: Roles of temperature and water availability // Journal of Systematics and Evolution. 2015. Vol. 53, № 6. PP. 535-545.
Svenning J.-C., Skov F. The relative roles of environment and history as controls of tree species composition and richness in Europe // Journal of Biogeography. 2005. Vol. 32. PP. 1019-1033.
Ricklefs R.E. Evolutionary diversification and the origin of the diversity-environment relationship // Ecology. 2006. Vol. 87. PP. S3-S13.
Kerkoff A.J., Moriarty P.E., Weiser M.D. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis // Proceedings of the National Academy of Sciences. 2014. Vol. 111. PP. 8125-8130.
Mittelbach G.G., Schemske D.W., Cornell H.V., Allen A.P., Brown J.M., Bush M.B., Harrison S.P., Hurlbert A.H., Knowlton N., Lessios H.A., McCain C.M., McCune A.R., McDade L.A., McPeek M.A., Near T.J., Price T.D., Ricklefs R.E., Roy K., Sax D.F., Schluter D., Sobel J.M., Turelli M. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography // Ecology Letters. 2007. Vol. 10. PP. 315-331.
Qian H., Ricklefs R.E. Large-scale processes and the Asian bias in species diversity of temperate plants // Nature. 2000. Vol. 407. PP. 180-182.
Shiono T., Kusumoto B., Yasuhara M., Kubota Y. Roles of climate niche conservatism and range dynamics in woody plant diversity patterns through the Cenozoic // Global Ecology and Biogeography. 2018. Vol. 27. PP. 865-874.
Wang S., Xu X., Shrestha N., Zimmermann N.E., Tang Z., Wang Z. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM) // PLoS ONE. 2017. 12 (4): e0175742. https://doi.org/10.1371/journal.pone.0175742
Zanne A.E., Tank D.C., Cornwell W.K., and all Three keys to the radiation of angiosperms into freezing environments // Nature. 2014. Vol. 506. PP. 89-92.
Jansson R., Dynesius M. The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution // Annual Review of Ecology and Systematics. 2002. Vol. 33. PP. 741-777.
Donoghue M.J. Colloquium paper: a phylogenetic perspective on the distribution of plant diversity // Proceedings of National Academy of Sciences. 2008. Vol. 105. Suppl. 1. PP. 11549-11555.
Latham R.E., Ricklefs R.E. Global patterns of tree species richness in moist forests: Energydiversity theory does not account for variation in species richness // Oikos. 1993. Vol. 67. PP. 325-333.
Giehl E.L.H., Jarenkow J.A. Niche conservatism and the differences in species richness at the transition of tropical and subtropical climates in South America // Ecography. 2012. Vol. 35. PP. 933-943.
Wiens J.J., Ackerly D.D., Allen A.P., Anacker B.L., Buckley L.B., Cornell H.V., Damschen E.I., Jonathan D.T., Grytnes J.A., Harrison S.P., Hawkins B.A., Holt R.D., McCain C.M., Stephens P.R. Niche conservatism as an emerging principle in ecology and conservation biology // Ecology Letters. 2010. Vol. 13. PP. 1310-1324.
Wiens J.J., Donoghue M.J. Historical biogeography, ecology and species richness // Trends in Ecology & Evolution. 2004. Vol. 19. PP. 639-644.
Малышев Л.И. Количественный анализ флоры: пространственное разнообразие, уровень видового богатства и репрезентативность участков обследования // Ботанический журнал. 1975. Т. 60, № 11. С. 1537-1550.
Водопьянова Н.С. Зональность флоры Среднесибирского плоскогорья. Новосибирск : Наука, 1984. 156 с.
Морозова О.В. Таксономическое богатство флоры Восточной Европы: факторы пространственной дифференциации. М. : Наука, 2008. 328 с.
Шмидт В.М. Зависимость количественных показателей конкретных флор европейской части СССР от географической широты // Ботанический журнал. 1979. Т. 64, № 2. C. 172-183.
Hawkins B.A. Ecology's oldest pattern? // Trends in Ecology & Evolution. 2001. Vol. 16, № 8. P. 470.
Вульф Е.В. Опыт деления земного шара на растительные области на основе количественного распределения видов // Труды ВАСХНиЛ. 1934. Сер. 1, № 2. С. 3-40.
Морозова О.В. Пространственные тренды таксономического богатства флоры сосудистых растений // Биосфера. 2011. Т. 3, № 2. С. 190-207.
Wang Z., Fang J., Tang Z., Lin X. Patterns, determinants and models of woody plant diversity in China // Proceedings of the Royal Society B: Biological Sciences. 2011. Vol. 278. PP. 2122-2132.
Marsh S.T., Brummitt N.A., de Kok R.P.J., Utteridge T.M.A. Large-scale patterns of plant diversity and conservation priorities in South East Asia // Blumea. 2009. Vol. 54. PP. 103108.
Kreft H., Jetz W. Global patterns and determinants of vascular plant diversity // Proceedings of the National Academy of Sciences. 2007. Vol. 104. PP. 5925-5930.
Mutke J., Barthlott W. Patterns of vascular plant diversity at continental to global scales // Biologiske Skrifter. 2005. Vol. 55. PP. 521-531.
Hof C., Levinsky I., Araujo M.B., Rahbek C. Rethinking species' ability to cope with rapid climate change // Global Change Biology. 2011. Vol. 17. PP. 2987-2990.
Loarie S.R., Duffy P.B., Hamilton H., Asner G.P., Field C.B., Ackerly D.D. The velocity of climate change // Nature. 2009. Vol. 462. PP. 1052-1055.
Currie D.J. Energy and large-scale patterns of animal- and plant-species richness // The American Naturalist. 1991. Vol. 137. PP. 27-49
Svenning J.C., Skov F. Ice age legacies in the geographical distribution of tree species richness in Europe // Global Ecology and Biogeography. 2007. Vol. 16. PP. 234-245.
Colwell R.K., Lees D.C. The mid-domain effect: Geometric constraints on the geography of species richness // Trends in Ecology & Evolution. 2000. Vol. 15. PP. 70-76
Stein A., Gerstner K., Kreft H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales // Ecology Letters. 2014. Vol. 17. PP. 866-880
Sandel B., Arge L., Dalsgaard B., Davies R.G., Gaston K.J., Sutherland W.J., Svenning J.C. The influence of Late Quaternary climate-change velocity on species endemism // Science. 2011. Vol. 334. PP. 660-664
Currie D.J., Paquin V. Large-scale biogeographical patterns of species richness of trees // Nature. 1987. Vol. 329. PP. 326-327
Field R., Hawkins B.A., Cornell H.V., Currie D.J., Diniz-Filho J.A.F., Guegan J.-F., Kaufman D.M., Kerr J.T., Mittelbach G.G., Oberdorff T., O'Brien E.M., Turner J.R.G. Spatial species-richness gradients across scales: a meta-analysis // Journal of Biogeography. 2009. Vol. 36. PP. 132-147
Montoya D., Rodriguez M.A., Zavala M.A., Hawkins B.A. Contemporary richness of holarctic trees and the historical pattern of glacial retreat // Ecography. 2007. Vol. 30. PP. 173-182
Brown J.H., Lomolino M.V. Biogeography. Sunderland, Massachusetts : Sinauer Associates, Inc., 1998. 2nd edition. 691 p