Impact of abiotic factors on the decomposition of litter of peat-forming plants in the incubation experiment
In bog ecosystems, the decomposition rate of plant residues is largely determined by the combined effect of abiotic (temperature and moisture of peat) and biotic (properties of peat-forming plants) factors. Model experiments under well controlled external conditions are a good tool to determine the contribution of each factor to the decomposition process. The aim of the research was to quantify the effect of temperature (T) and moisture (W) of peat on the decomposition rate of the main peat-forming plant residues of the oligotrophic wetland in the southern taiga subzone of Western Siberia. In a 3-month incubation experiment, we studied the initial stages of decomposition of 4 types of plant substrates at various temperatures (T = 2, 12, 22°C) and contrasting moisture levels corresponding to 30, 60 and 90% of their water holding capacity (WHC). We collected plant residues of Sphagnum fuscum Klinggr., Chamaedaphne calyculata Moench., and Eriophorum vaginatum L. in the Bakcharskoe oligotrophic bog (Bakcharsky district, Tomsk region, 56°58'N, 82°36'E) in September 2017. Besides the individual types of plant residues, a mixed sample of S. fuscum (60%) and Ch. calyculata (40%) was also studied. We determined the basic physicochemical characteristics in the original plant substrates: pH value in water and salt extracts (1М КС1) (litter : solution = 1:25), WHC, hygroscopic moisture, ash content, total carbon (C) and nitrogen (N) content, C to N ratio, and some organic compounds (alcohol-soluble compounds, cellulose, lignin and lignin-like substances) by the gravimetric method (See Table 1-2). Lignin and biogenetically related lignans and flavonoids were determined after removal of bituminous substances and treatment with 72 % sulfuric acid. Cellulose was extracted using a mixture of concentrated nitric acid and ethanol. For the experiment, we placed plant residues (1-3 g of air-dry mass) in 110-ml glass bottles and moistened to 30, 60 and 90% of their WHC with bog water, which contained native microflora. The bottles with moistened plant residues stayed at room temperature for 7 days (pre-incubation period) and, then, were placed in thermostats for a 3-month incubation at 2, 12, and 22°C. During the experiment, the moisture content of plant material was maintained at a constant level by adding bog water. The experiment was conducted in 3 replicates. CO2 emission rate (or decomposition rate, DecR) of the main peat-forming plant residues was measured using LI-820 (USA) infrared gas analyzer 3-5 times per week for the 1st month of the experiment and 2 times per week over the next 2 months. The decomposition constant (k) of plant residues was calculated based on the curves of cumulative C(CO2) losses over the entire experiment using an exponential regression model. DecR (pg C/g sample/hour) was calculated according to Kurganova I et al. (2018), Kurganova I et al. (2012). The impact of the temperature factor was estimated using Q10 temperature coefficient according to Kurganova I et al (2012), which was determined for two temperature intervals (2-12°С and 12-22°C). We demonstrated that the dynamics and intensity of C (CO2) release during the experiment were significantly influenced by all three factors: temperature, moisture content, and type of plant residues. In the initial stages of decomposition, we observed an enhanced release of C (CO2) for all plant samples caused by a surge in the activity of destructor microorganisms and the presence of readily available compounds in the litter composition. An increase in the decomposition rate at 22°C was recorded during the first 1-2 days of incubation and at 2°C after 1-2 weeks of experiment. At the same time, the decrease in the decomposition activity of plant residues at 2°C was much slower than at 22°C (See Fig. 1-3). The temperature coefficient Q10 for DecR depended on the type of plant residue and its moisture and varied from 0.97 to 1.53 in the low temperature range (2-12°C) and from 1.05 to 2.18 in the temperature range of 12-22°C (See Fig. 6). The highest total C (CO2) losses throughout the 3 months of the experiment (Ccum) were observed for Ch. calyculata and E. vaginatum. Ccum value varied from 67 to 93 mg C/g at 22°C and decreased to 29-46 mg C/g at 2°C (See Fig. 4, А-С). Depending on temperature and moisture, S. fuscum lost only 3-5% of the initial amount of C over the 3 months of the experiment. The mixed sample lost 6-11% of the initial C content whereas the C(CO2) losses from Ch. са1уси1а1а and E. vaginatum varied from 6 to 18% (See Fig. 4, D-F). Based on the result of 3-way analysis of variance (ANOVA), we revealed that all the factors studied (type of plant substrate, temperature and moisture content) significantly influenced the variability of Ccum value for 3 months of the experiment. The type of substrate is the main factor which affected the total C(CO2), explaining 61% of the total variance of Ccum (See Table 3). Temperature and humidity accounted for 31 and 2% of the variance explained, respectively. The 2-way ANOVA was carried out individually for each plant substrate and showed that the temperature was the main factor that affected the total C(CO2) loss from the studied plant substrates explaining 75-90% of the Ccum dispersion (See Table 4). The lowest values of the decomposition constant (k = 0.0003-0.0004 day-1) were attributed to the S. fuscum at 12 and 2°C. Decomposition constants for E. vaginatum and Ch. сalyculata were the highest (k> 0.001 day-1) at all studied temperatures among all types of plant substrates (See Fig. 5). We can conclude that due to the slow decomposition rate, S. fuscum makes a major contribution to peat formation process. The paper contains 6 Figures, 4 Tables and 45 References.
Keywords
константа разложения,
выделение СО2,
гидротермические условия,
Eriophorum vaginatum,
Chamaedaphne calyculata,
Sphagnum fuscum,
температурная чувствительность,
Sphagnum fuscum,
Chamaedaphne calyculata,
Eriophorum vaginatum,
hydrothermal conditions,
СО2 emission,
constant of decomposition,
temperature sensitivityAuthors
Nikonova Liliya G. | Institute of Physicochemical and Biological Problems in Soil Science; Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences | lili112358@mail.ru |
Kurganova Irina N. | Institute of Physicochemical and Biological Problems in Soil Science | ikurg@mail.ru |
Lopes de Gerenyu Valentin O. | Institute of Physicochemical and Biological Problems in Soil Science | vlopes@mail.ru |
Zhmurin Vasily A. | Institute of Physicochemical and Biological Problems in Soil Science | zhmurin.vasya@mail.ru |
Golovatskaya Eugenia A. | Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences | golovatskayaea@gmail.com |
Всего: 5
References
Оболенская А.В., Ельницкая З.П., Леонович А.А. Лабораторные работы по химии древесины и целлюлозы : учеб. пособие для вузов. М. : Экология, 1991. 320 с.
Головацкая Е.А., Никонова Л.Г. Разложение растительных остатков в торфяных почвах олиготрофных болот // Вестник Томского государственного университета. Биология. 2013. № 3 (23). C. 137-151.
Nikonova L.G., Golovatskaya E.A., Terechshenko N.N. Decomposition rate of peatforming plants in the oligotrophic peatland at the first stages of destruction // IOP Conf. Series: Earth and Environmental Science. 2018. Vol. 138, № 1. 012013. doi: 10.1088/17551315/138/1/012013
Katterer T., Reichstein M., Andren O. Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models // Biology and Fertility of Soils. 1998. Vol. 27, № 3. PP. 258-262. doi: 10.1007/s003740050430
Дурынина Е.П., Егоров В.С. Агрохимический анализ почв, растений, удобрений. М. : МГУ, 1998. 113 с.
Воробьева Л.А., Ладонин Д.В., Лопухина О.В., Рудакова Т.А., Кирюшин А.В. Химический анализ почв. Вопросы и ответы. М. : МГУ, 2012. 186 с.
Гиглёв В.Ю. Физика почв : учеб.-метод. пособие. Пермь : Изд-во Пермского ун-та, 2012. 37 с.
Кауричев И.С. Практикум по почвоведению. М. : Колос, 1980. 272 с.
Browning B.L., Methods of Wood Chemistry. New York ; London : Intersci. Publ.; 1967. Vol. 2. 498 p.
Dence C.W. The determination of lignin // Methods of Lignin Chemistry. Berlin : SpringerVerlag, 1992. PP. 33-61. doi: 10.1007/978-3-642-74065-7_3
Leroy F., Gogo S., Buttler A., Bragazza L., Laggoun-Defarge F. Litter decomposition in peatlands is promoted by mixed plants // Journal of soils and sediments. 2018. № 18(3). PP. 739-749. doi: 10.1007/s11368-017-1820-3
Zhou G., Cao W., Bai J., Xu C., Zeng N., Gao S., Rees R. Non-additive responses of soil C and N to rice straw and hairy vetch (Vicia villosa Roth L.) mixtures in a paddy soil // Plant and Soil. 2019. Vol. 436, № 1. PP. 229-244. doi: 10.1007/s11104-018-03926-6
Вишнякова Е.К., Миронычева-Токарева Н.П., Косых Н.П. Динамика разложения растений на болотах Васюганья // Вестник ТГПУ. 2012. № 7. С. 88-93.
Dobrovol'skaya T.G., Golovchenko A.V., Zvyagintsev D.G. Analysis of ecological factors limiting the destruction of high-moor peat // Eurasian Soil Science. 2014. Vol. 47, № 3. РР. 182-193. doi: 10.1134/S106422931403003X
Filippova N.V., Glagolev M.V. Short-term standard litter decomposition across three different ecosystems in middle taiga zone of West Siberia // IOP Conf. Series: Earth and Environmental Science. 2018. Vol. 138, № 1. 012004. doi: 10.1088/1755-1315/138/1/012004
Функционирование микробных комплексов в верховых торфяниках - анализ причин медленной деструкции торфа / под ред. И.Ю Чернова. М. : Товарищество научных изданий КМК, 2013. 128 с.
Вишнякова Е.К., Коронатова Н.Г., Михайлова Е.В. Трансформации соединений углерода и макроэлементов в торфяных залежах болот различной трофности // Интерэкспо Гео-Сибирь. 2017. Т. 4, №. 2. С. 137-140
Коронатова Н.Г. Исследование разложения торфа в болотах методом инкубации сухих и влажных образцов // Динамика окружающей среды и глобальные изменения климата. 2010. Т. 1, № 1. С. 77-84.
Hogg E.H., Lieffers V. J., Wein R.W. Potential carbon losses from peat profiles: effects of temperature, drought cycles, and fire // Ecological Applications. 1992. Vol. 2, № 3. PP. 298-306
Миронычева-Токарева Н.П., Косых Н.П., Вишнякова Е.К. Продукционно-деструкционные процессы в болотных экосистемах Васюганья // Динамика окружающей среды и глобальные изменения климата. 2013. Т. 4, № 1. С. 1-9
Головацкая Е.А., Никонова Л.Г. Влияние уровня болотных вод на процессы трансформации сфагновых мхов в торфяной почве олиготрофных болот // Почвоведение. 2017. № 5. С. 606-613. doi: 10.7868/80032180X17030030
Domisch T., Finer L., Laine J., Laiho R. Decomposition and nitrogen dynamics of litter in peat soils from two climatic regions under different temperature regimes // European Journal of Soil Biology. 2006. № 42. PP. 74-81. doi: 10.1016/j.ejsobi.2005.09.017
Vanhala P., Karhu K., Tuomi M. Bjorklof K., Fritze H., Liski J. Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone // Soil Biology and Biochemistry. 2008. № 40. PP. 1758-1764. doi: 10.1016/j. soilbio.2008.02.021
Guo X., Lu X., Tong S., Dai G. Influence of environment and substrate quality on the decomposition of wetland plant root in the Sanjiang Plain, Northeast China // Journal of Environmental Sciences. 2008. № 20. PP. 1445-1452. doi: 10.1016/S1001-0742(08)62547-4
Peltoniemi K., Strakova P., Fritze H., Iraizoz P.A., Pennanen T. Laiho R. How waterlevel drawdown modified litter-decomposing fungal and actinobacterial communities in boreal peatlands // Soil Biology and Biochemistry. 2012. № 51. PP. 20-34. doi: 10.1016/j. soilbio.2012.04.013
Rovira P., Jorba M., Romanya J. Active and passive organic matter fractions in Mediterranean forest soils // Biology and Fertility of Soils. 2010. Vol. 46, № 4. PP. 355-369. doi: 10.1007/ s00374-009-0437-0
Инишева Л.И. Торфяные ресурсы и их характеристика // Болота Западной Сибири - их роль в биосфере / под ред. А.А. Земцова. Томск : ТГУ, СибНИИТ, 2000. 2-е изд. 72 с
Huang Y., Zou J., Zheng X., Wang Y., Xu X. Nitrous oxide emissions as influenced by amendment of plant residues with different C : N ratios // Soil Biology and Biochemistry. 2004. Vol. 36, № 6. PP. 973-981. doi: 10.1016/j.soilbio.2004.02.009
Ananyeva N.D., Susyan E.A., Ryzhova I.M., Bocharnikova E.O., Stolnikova E.V. Microbial biomass carbon and the microbial carbon dioxide production by soddy-podzolic soils in postagrogenic biogeocenoses and in native spruce forests of the southern taiga (Kostroma oblast) // Eurasian Soil Science. 2009. Vol. 42, № 9. PP. 1029-1037. doi: 10.1134/ S1064229309090105
Kurganova I., Lopes de Gerenyu V., Galibina N., Kapitsa E., Shorohova E. Coupled effect of temperature and mineral additions facilitates decay of aspen bark // Geoderma. 2018. № 316. PP. 27-37. doi: 10.1016/j.geoderma.2017.12.014
Kurganova I.N., Lopes de Gerenyu V.O., Gallardo Lancho J.F., Oehm C.T. Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, mediterranean, and tropical monsoon climates // Eurasian Soil Science. 2012. № 45 (1). PP. 68-79. doi: 10.1134/S1064229312010085
Chen H., Dong S., Liu L., Ma C., Zhang T., Zhu X., Mo J. Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest // PLoS One. 2013. № 8 (12). PP. 84-101. doi: 10.1371/journal.pone.0084101
Berg B. Decomposition patterns for foliar litter: A theory for influencing factors // Soil Biol. Biochem. 2014. Vol. 78. PP. 222-232. doi: 10.1016/j.soilbio.2014.08.005
Денисенков В.П. Основы болотоведения : учеб. пособие. СПб. : Изд-во СПб. ун-та, 2000. 224 с.
Козловская Л.С., Медведева В.М., Пьявченко Н.И. Динамика органического вещества в процессе торфообразования. Л. : Наука, 1978. 172 с.
Ларионова А.А., Мальцева А.Н., Лопес де Гереню В.О., Квиткина А.К., Быховец С.С., Золотарева Б.Н., Кудеяров В.Н. Влияние температуры и влажности на минерализацию и гумификацию лиственного опада в модельном инкубационном эксперименте // Почвоведение. 2017. № 4. С. 438-448. doi: 10.7868/S0032180X17020083
Бамбалов Н.Н., Хоружик А.В., Лукошко Е.С., Стригуцкий В.П. Превращение отмерших растений в болотных биогеоценозах // Эксперимент и математическое моделирование в изучении биогеоценозов лесов и болот. М. : Наука, 1990. С. 53-63.
Fioretto A., Di Nardo C., Papa S., Fuggi A. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem // Soil Biology and Biochemistry. 2005. № 37. PP. 1083-1091. doi: 10.1016/j. soilbio.2004.11.007
Hajek T. Habitat and species controls on Sphagnum production and decomposition in a mountain bog // Boreal Environmental Research. 2009. № 14. PP. 947-958.
Косых Н.П., Миронычева-Токарева Н.П., Паршина Е.К. Фитомасса, продукция и разложение растительных остатков в олиготрофных болотах средней тайги Западной Сибири // Вестник Томского государственного педагогического университета. 2009. № 3. С. 63-69.
Fierer N., Craine J.M., McLauchlan K., Schimel J.P. Litter quality and the temperature sensitivity of decomposition // Ecology. 2005. Vol. 86. PP. 320-326. doi: 10.1890/04-1254
Davidson E.A., Janssens I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change // Nature. 2006. Vol. 440. PP. 165-173. doi: 10.1038/ nature04514
Preston C.M., Nault J.R., Trofymow J.A., Smyth C. Chemical changes during 6 years decomposition of litters in some Canadian forest sites // Ecosystems. 2009. Vol. 12. PP. 1053-1077. doi: 10.1007/s10021-009-9266-0
Prescott C. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils // Biogeochemistry. 2010. Vol. 101. PP. 133-149. doi: 10.1007/ s10533-010-9439-0
Трофимов С.Я., Ботнер П., Куту М.М. Разложение органического вещества органогенных горизонтов лесных почв в лабораторных условиях // Почвоведение. 1998. № 12. С. 1480-1488.