Features of Cd and Ni accumulation by Larix sukaczewii Dyl. under technogenesis
In industrially developed cities, sanitary-protective afforestation promotes the deposition of aeropollutants, as well as the absorption of toxicants from the soil. However, performing a function of a phytofilter for a long time negatively affects the vitality of the trees themselves. Among numerous pollutants of technogenic origin, the most toxic for living organisms, including plants, are heavy metals. Studying the absorption capacity of different species of woody plants and their reaction to increased concentrations of toxicants allows us to predict the stability of protective forest stands and design forestry measures. One of the species, widely used in creating sanitary protection zones in the Republic of Bashkortostan, is Larix sukaczewii Dyl., characterized by its resistance to extreme environmental factors. The adaptive abilities of this species to an increased content of heavy metals remain poorly studied. The aim of this study is to identify the features of the accumulation and distribution of heavy metals (Cd and Ni) by Larix sukaczewii and assess the relative living condition of the stand in Sterlitamak industrial center. We conducted studies in 2007-2018 in the city of Sterlitamak (53°38'00"N, 55°57'00"E), a major center of the chemical and oil refining industry of the Russian Federation. The establishment and description of trial plots was carried out according to generally accepted methods [Andreeva EN et al., 2002; Forest ecology..., 2007]. Permanent trial plot No. 1 measuring 20x50 m was located 1-2 km from sources of petrochemical and chemical pollution (See Fig. 1). Permanent trial plot No. 2 measuring 18x50 m was located in the area of conditional control (25-30 km from pollution sources). Trial areas were laid in coeval (about 55 years) and clean tree stands (See Table 1). The category of the vital state of an individual tree was determined by the auxiliary table (See Table 2). After summing up the number of trees by categories, we assessed the relative living conditions of the entire stand [Alekseev VA, 1990]. At a rate of 100% to 80%, the stand was assessed as “healthy”, at 79-50% as “weakened”, at 49-20% as “strongly weakened”, and at 19% and below as “completely destroyed”. The study of the soil saturation with absorbing roots was carried out by the method of soil sections 1x1x1 m in size [Root Methods, 2000]. The roots were sorted by fractions: less than 1 mm in diameter (absorbing roots), 1-3 mm (half-skeletal roots), and more than 3 mm (skeletal roots). We determined the weight of the roots in the air-dry state. To study the metal content, annually during the growing season, we performed repeated re-selection of needles, branches and roots. At the same time, we took soil samples from the depth of 0-20 cm. The samples were dried to an air-dry state and analyzed on a “ZEEnit-650” atomic absorption spectrometer (Germany) [Hill SJ, Fisher AS, 2017]. In soil samples, we determined gross and mobile forms of metals. Data are presented as arithmetic mean ± standard deviation (M ± SD). Differences were considered statistically significant atp < 0.05. We found that at the permanent trial plot No. 1, the trees are more weakened in comparison to the conditional control. External signs of oppression were expressed in a crown density decrease to 75-80%, an increase in the number of dead branches to 25-30%, and damage to the assimilation apparatus by chlorosis and necrosis (on average by 15%). Trees classified as “weakened” accounted for 55% of the stand, and deadwood reached 10%. The relative vital condition of the entire stand was characterized as “weakened” (See Table 3). In the area of conditional control, the forest stand corresponded to the “healthy” category. Moreover, the trees had a better formed crown (average density is 82%) and fewer dead branches on the trunk (21% on average). Needles damage by chlorosis was not more than 11%. The results of chemical analysis of soil samples revealed statistically significant differences (p < 0.05) between the content of the metals in the zone of influence of the industrial center of Sterlitamak and in the area of conditional control (See Table 4). Higher concentrations of cadmium and nickel were found at the permanent trial plot No. 1. The leached chernozem prevailed in the soil cover. The pH of the soil according to many years of research ranged from 6.55-6.90 units. The bulk of the absorbing larch roots was located at a depth of 0-30 cm (See Fig. 2). Moreover, in the control area, the root saturation of the soil reached 78.51 ± 4.10 g / m2. In the influence zone of Sterlitamak industrial center, we observed a decrease in the proportion of absorbing roots: in healthy trees 2 times and in weakened trees 2-3 times. Perhaps, this is due to higher concentrations of metals in the surface of soil layer at a permanent trial plot No. 1, which led to a significant restructuring of the larch suction root apparatus. Chemical analysis of plant samples showed that in the contaminated area the content of cadmium in needles and branches is statistically significantly (p < 0.05) higher by 5-6 times and that of nickel by 3-4 times. In underground organs, the content of elements in comparison to the conditional control increased 2.5-4 times (p < 0.05). Besides, in the underground part, nickel is mainly accumulated in absorbing roots, and cadmium in absorbing and semi-skeletal ones (See Fig. 3 and 4). The movement of nickel from absorbing roots to conductive roots is less expressed than cadmium. In the aerial part of trees, the metal content in the branches is higher than in the needles (See Fig. 5 and 6). At the same time, in healthy trees, the barrier function of the root system is preserved, which prevents the excess intake of pollutants in the aboveground organs. Despite the fact that the relative vital condition of the stand at the contaminated site is characterized as “weakened”, there is no decrease in the quality class. It is not required to carry out operational forestry activities in the sanitary-protective larch plantations. Timely sanitary felling and further monitoring are recommended. The paper contains 6 Figures, 4 Tables and 38 References. The Authors declare no conflict of interest.
Keywords
тяжелые металлы,
санитарно-защитные лесонасаждения,
относительное жизненное состояние древостоя,
корненасыщенность почвы,
Стерлитамакский промышленный центр,
Предуралье,
heavy metals,
sanitary-protective afforestation,
relative living state of the stand,
root saturation of the soil,
Sterlitamak industrial center,
Cis-UralsAuthors
Giniyatullin Rafak Kh. | Ufa Federal Research Centre of the Russian Academy of Sciences | grafak2012@yandex.ru |
Baktybaeva Zulfiya B. | Ufa Research Institute of Occupational Health and Human Ecology | baktybaeva@mail.ru |
Всего: 2
References
Ali H., Khan E., Sajad M.A. Phytoremediation of heavy metals - Concepts and applications // Chemosphere. 2013. Vol. 91, №2 7. РР. 869-881. doi: 10.1016/j.chemosphere.2013.01.075
Kakkar P, Jaffery F.N. Biological markers for metal toxicity // Environmental Toxicology and Pharmacology. 2005. Vol. 19, № 2. РР 335-349. doi: 10.1016/j.etap.2004.09.003
Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. Alloway B.J., ed. Dordrecht, Netherlands ; New York : Springer, 2013. 632 p.
Неверова О.А., Колмогорова Е.Ю. Ксерофитизация листьев древесных растений как показатель загрязнения атмосферного воздуха (на примере г Кемерово) // Известия высших учебных заведений. Лесной журнал. 2002. № 3. С. 29-33.
Кулагин А.А., Шагиева Ю.А. Древесные растения и биологическая консервация промышленных загрязнителей. М. : Наука, 2005. 190 с.
Кирдянов А.В., Мыглан В.С., Пименов А.В., Кнорре А.А., Экарт А.К., Ваганов Е.А. Динамика усыхания лиственницы сибирской в зоне влияния техногенных эмиссий предприятий Норильского промышленного района // Сибирский экологический журнал. 2014. Т 21, № 6. С. 945-952.
Giniyatullin R., Baktybaeva Z., Gabidullina G., Teltsova L. State and Environment Purifying Functions of Forest Stands Under Conditions of Polymetallic Pollution in the Industrial Center of Sterlitamak // Ecological-Socio-Economic Systems: Models of Competition and Cooperation (ESES 2019). Advances in Social Science, Education and Humanities Research / Shelomentsev A, Vasilieva O, Chepelyuk N and Orlov S, editors. 2020. Vol. 392. РР. 130-133. doi: 10.2991/assehr.k.200113.027
Касимов Н.С., Кошелева Н.Е., Сорокина О.И., Гунин П.Д., Бажа С.Н., Энх-Амгалан С. Эколого-геохимическая оценка состояния древесной растительности в г. Улан-Батор (Монголия) // Аридные экосистемы. 2011. Т. 17, № 4 (49). С. 14-31.
Гиниятуллин Р.Х., Кулагин А.Ю. Особенности содержания свинца в органах у здоровых и ослабленных деревьев березы повислой (Betula pendula Roth) в условиях промышленного загрязнения // Известия Уфимского научного центра РАН. 2018. № 3. С. 39-44.
Moudouma C.F.M., Riou C., Gloaguen V, Saladin G. Hybrid larch (Larix x eurolepis Henry): a good candidate for cadmium phytoremediation? // Environmental Science and Pollution Research. 2013. Vol. 20, № 3. РР. 1889-1894. doi: 10.1007/s11356-012-1419-6
Bonet A., Lelu-Walter M., Faugeron C., Gloaguen V, Saladin G. Physiological responses of the hybrid larch (Larix x eurolepis Henry) to cadmium exposure and distribution of cadmium in plantlets // Environmental Science and Pollution Research. 2016. Vol. 23, № 9. РР. 8617-8626. doi: 10.1007/s11356-016-6094-6
Juranovic Cindric I., Zeiner M., Starcevic A., Stingeder G. Metals in pine needles: characterisation of bio-indicators depending on species // International Journal of Environmental Science and Technology. 2019. Vol. 16. РР. 4339-4346. doi: 10.1007/ s13762-018-2096-x
Коротеева Е.В., Веселкин Д.В., Куянцева Н.Б., Мумбер А.Г., Чащина О.Е. Накопление тяжелых металлов в разных органах березы повислой возле Карабашского медеплавильного комбината // Агрохимия. 2015. № 3. С. 88-96.
Kandziora-Ciupa M., Ciepal R., Nadgorska-Socha A., Barczyk G. Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites // Ecotoxicology. 2016. Vol. 25, № 5. РР. 970-981. doi: 10.1007/s10646-016-1654
Vorobeichik E.L., Pishchulin P.G. Industrial pollution reduces the effect of trees on forming the patterns of heavy metal concentration fields in forest litter // Russian Journal of Ecology. 2016. Vol. 47, № 5. РР. 431-441. doi: 10.1134/S1067413616050155
Ivanov Y.V., Kartashov A.V., Ivanova A.I., Ivanov V.P., Marchenko S.I., Nartov D.I., Kuznetsov V V. Long-term impact of cement plant emissions on the elemental composition of both soils and pine stands and on the formation of Scots pine seeds // Environmental Pollution. 2018. Vol. 243. Pt. B. РР. 1383-1393. doi: 10.1016/j.envpol.2018.09.099
Путенихин В.П., Фарукшина Г.Г., Шигапов З.Х. Лиственница Сукачева на Урале: изменчивость и популяционно-генетическая структура. М. : Наука, 2004. 275 с.
Николаева М.А., Орлова Л.В., Крестьянов А.А., Каматов Д.Е. Географическая изменчивость лиственницы в опытных лесных культурах Республики Башкортостан // Сибирский лесной журнал. 2019. №. 1. С. 30-43. doi: 10.15372/SJFS20190103
Атлас Республики Башкортостан / под ред. И.М. Япарова. Уфа : Китап, 2005. 420 с.
Реестр особо охраняемых природных территорий Республики Башкортостан / под ред. Б.М. Миркина. Уфа : Гилем, 2006. 414 с.
О состоянии природных ресурсов и окружающей среды Республики Башкортостан в 2018 году: Государственный доклад. Уфа : Министерство природопользования и экологии Республики Башкортостан, 2019. 276 с.
Бактыбаева З.Б., Сулейманов Р.А., Валеев Т.К., Рахматуллин Н.Р. Оценка воздействия нефтеперерабатывающей и нефтехимической промышленности на экологогигиеническое состояние объектов окружающей среды и здоровье населения (Обзор литературы) // Медицина труда и экология человека. 2018. № 4. С. 12-26.
Курамшин Э.М., Курамшина Н.Г., Нуртдинова Э.Э., Имашев УБ. Геохимическая оценка загрязнения тяжелыми металлами городских почв Башкортостана // Башкирский химический журнал. 2015. Т 22, № 2. С. 74-79.
Андреева Е.Н., Баккал И.Ю., Горшков В.В., Лянгузова И.В., Мазная Е.А., Нешатаев В.Ю., Ставрова Н.И., Ярмишко В.Т., Ярмишко М.А. Методы изучения лесных сообществ. СПб. : НИИХимии СпбГУ, 2002. 240 с.
Forest Ecology and Conservation: A handbook of techniques. Newton A., editor. Oxford : University Press, 2007. 454 p.
Лесные экосистемы и атмосферное загрязнение / под ред. В.А. Алексеева. Л. : Наука, 1990. 200 с.
Root Methods: A Handbook. Smit A.L., Bengough A.G., Engels C., Noordwijk M. van, Pellerin S., Geijn S.C. van de, editors. Berlin : Springer, 2000. 587 p.
Bargagli R. Trace Elements in Terrestrial Plants: An Ecophysiological Approach to Biomonitoring and Biorecovery. Berlin : Springer, 1998. 324 р.
Hill S.J., Fisher A.S. Atomic Absorption, Methods and Instrumentation. Encyclopedia of Spectroscopy and Spectrometry. 3rd ed. Lindon J.C, editor-in-chief. UK, London : Elsevier Publ.; 2017. pp. 37-43. doi: 10.1016/B978-0-12-803224-4.00099-6
Rademacher P. Atmospheric heavy metals and forest ecosystems: Work report of the Institute for World Forestry. Hamburg : Federal Research Centre for Forestry and Forest Products (BFH), Institute for World Forestry, 2003/12.
Seregin I.V., Kozhevnikova A.D. Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium // Russian Journal of Plant Physiology. 2008. Vol. 55, № 1. РР. 1-22. doi: 10.1007/s11183-008-1001-8
Kabata-Pendias А. Trace Elements in Soils and Plants. 4th ed. Boca Raton, FL, USA : CRC Press/Taylor & Francis Group, 2010. 548 р.
Seregin I.V, Ivanov V.B. Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants // Russian Journal of Plant Physiology. 2001. Vol. 48, № 4. РР. 523-544. doi: 10.1023/A:1016719901147
Andresen E., Kupper H. Cadmium toxicity in plants // Cadmium: From Toxicity to Essentiality. Metal Ions in Life Sciences. Sigel A., Sigel H., Sigel R.C.O., ed. Netherlands : Springer, 2013. Vol. 11. PR 395-413.
Yusuf M., Fariduddin Q., Hayat S., Ahmad A. Nickel: An Overview of Uptake, Essentiality and Toxicity in Plants // Bulletin of Environmental Contamination and Toxicology. 2011. Vol. 86, № 1. РР 1-17. doi: 10.1007/s00128-010-0171-1
Sreekanth T.V.M., Nagajyothi P.C., Lee K.D., Prasad T.N.V.K.V. Occurrence, physiological responses and toxicity of nickel in plants // International Journal of Environmental Science and Technology. 2013. Vol. 10, № 5. РР 1129-1140. doi: 10.1007/s13762-013-0245-9
Parlak K.U. Effect of nickel on growth and biochemical characteristics of wheat (Triticum aestivum L.) seedlings // NJAS - Wageningen Journal of Life Sciences. 2016. Vol. 76. PR 1-5. doi: 10.1016/j.njas.2012.07.001
Reeves R.D., Baker A.J.M., Jaffre T., Erskine P.D., Echevarria G., van der Ent A. A global database for plants that hyperaccumulate metal and metalloid trace elements // New Phytologist. 2018. Vol. 218, № 2. РР. 407-411. doi: 10.1111/nph.14907