Cenopopulation structure of the key species in Siberian Pine mountain-taiga forests of the East Sayan mountains
Cenopopulation structure of the key species in Siberian Pine mountain-taiga forests of the East Sayan mountains Understanding of the key species coenopopulations structure of late-successional forest communities serve as a model of the forest ecosystems state and stability in the organization of sustainable forest management and conservation of biological diversity. The ontogenetic and age structures of cenopopulations of the key species, Pinus sibirica DuTour and Abies sibirica Ledeb., were studied in a climax S Siberian pine forest with Vaccinium myrtillus L. and green hypnum mosses (the most common forest type among taiga forests of the East Sayan mountains). The permanent sample plot (50x50 m) was located in the northeastern part of the Idarskoe Belogorye ridge of the East Sayan in the middle part of a westerly slope with a steepness of 2 degrees, at an elevation of 1000 m a.s.l. (54°44'N, 96°07'E). The forest stand had low productivity (quality class V), high closeness of crowns (about 1.0) and mixed composition with predominance of P. sibirica, which are characteristic of the mountain-taiga cedar forests of the Eastern Sayan (See Table.). We performed general geobotanical description, measurement of size and age, assessment of ontogenetic and sanitary states of each tree, as well as assessment of reforestation on the sample plot. P. sibirica coenopopopulation had a wide age amplitude (from 1 to 200 years) and absolutely uneven-aged structure, mass reforestation (more than 3000 ind./ha), large sizes of mature individuals (maximum diameter - 58 cm, height - 21.3 m), predominance of the number (70% of the total density of the forest stand) and timber stock (95%). The ontogenetic structure of P. sibirica cenopopulation was characterized by a normal state (See Fig. 1 and 2) with a sharp peak of the distribution and distinct left-handed skewness (coefficient of asymmetry - 2.0; kurtosis - 4.1). This corresponds with the concept of consistent self-reproduction and stability of forest ecosystems. A. sibirica was inferior in terms of the reforestation number (1575 ind./ha), life expectancy (up to 110 years) and the size of mature trees (maximum diameter - 22.7 cm, height -16 m). The ontogenetic structure of A. sibirica cenopopulation (See Fig. 1 and 3) is characterized by a complete spectrum and more distinct left-handed skewness. Thus, P. sibirica had a clearly expressed competitive population strategy. A. sibirica showed indications of phytocenotic tolerance. It is obvious that sustainable forest ecosystems in the absence of anthropogenic pressure in the mountain-taiga forest belt conditions is formed in the process of continuous change of P. sibirica age generations. The paper contains 3 Figures, 1 Table and 29 References.
Keywords
Siberian pine forests with Vaccinium myrtillus and green hypnum mosses,
age structure,
ontogenetic spectra,
Abies sibirica ,
Pinus sibirica Authors
Konovalova Mariya E. | Krasnoyarsk Scientific Center SB RAS | markonovalova@mail.ru |
Sobachkin Denis S. | Krasnoyarsk Scientific Center SB RAS | don.375@yandex.ru |
Всего: 2
References
Николаева С.А. Онтогенетическая структура ценопопуляций кедра сибирского в сообществах восстановительно-возрастного ряда кедровников зеленомошных Кеть-Чулымского междуречья // Вестник Томского государственного университета. Биология. 2009. № 1 (5). С. 71-81.
Konovalova M.E., Danilina D.M. Cenopopulation structure of key species in climax Siberian pine chern forests of the Western Sayan mountains // Ekologiya. 2019. Vol. 50, № 3. PP. 234-240. doi: 10.1134/S1067413619030081
Tretyakova I.N., Bazhina E.V Seed productivity of macrostrobili and the quality of seeds in Abies Sibirica in disturbed forest ecosystems of the mountains of Southern Siberia // Russian journal of ecology. 1996. Vol. 27, № 6. PP. 411-416.
Алексеев В.А. Диагностика жизненного состояния деревьев и древостоев // Лесоведение. 1997. № 4. С. 51-57.
Legendre P., Legendre L. Numerical ecology. 3rd English edition. Amsterdam: Elsevier, 2012. 990 p.
Поликарпов Н.П., Чебакова Н.М., Назимова Д.И. Климат и горные леса Южной Сибири. Новосибирск: Наука, 1986. 226 с.
Семечкин И.В. Структура и динамика кедровников Сибири. Новосибирск : Изд-во СО РАН, 2002. 253 с.
Восточноевропейские леса: история в голоцене и современность / отв. ред. О.В. Смирнова. М. : Наука, 2004. 575 с.
Махатков И.Д. Поливариантность онтогенеза пихты сибирской // Бюллетень Московского общества испытателей природы. Отдел биологический. 1991. Т. 96, № 4. С. 79-88. Структура ценопопуляций ключевых видов горно-таежных кедровников
Николаева С.А., Велисевич С.Н., Савчук Д.А. Онтогенез кедра сибирского в условиях Кеть-Чулымского междуречья // Вестник Томского государственного университета. Биология. 2008. № 3 (4). С. 35-41.
Черепанов С.К. Сосудистые растения России и сопредельных государств. СПб. : Мир и семья-95, 1995. 991 с.
Ignatov M.S., Afonina O.M., Ignatova E.A. and etc. Check-list of mosses of East Europe and North Asia // Arctoa. 2006. Vol. 15. PP. 1-130.
Типы лесов гор Южной Сибири / отв. ред. В.Н. Смагин. Новосибирск : Наука, 1980. 336 с.
Соколов В.А., Аткин А.С., Фарбер С.К. Структура и динамика таежных лесов. Новосибирск: Наука, 1994. 168 с.
Сукачев В.Н., Зонн С.В. Методические указания к изучению типов леса. М. : Изд-во АН СССР, 1961. 144 с.
Zhang L., Dieckmann U., Brannstrom A. On the performance of four methods for the numerical solution of ecologically realistic size-structured population models (Article) // Methods in Ecology and Evolution. 2017. Vol. 8. PP. 948-956. doi: 10.1111/2041-210X.12741
Angulo O., Bravo de la Parra R., Lopez-Marcos J.C., Zavala M.A. Stand dynamics and tree coexistence in an analytical structured model: The role of recruitment // Journal of Theoretical Biology. 2013. Vol. 333. PP. 91-101. doi: 10.1016/j.jtbi.2013.05.012
Ухваткина О.Н., Омелько А.М. Особенности жизненной стратегии сосны корейской (Pinus koraiensis Sieb. et Zucc.) в позднесукцессионном хвойно-широколиственном лесу на территории южного Сихотэ-Алиня // Вестник Томского государственного университета. Биология. 2016. № 4 (36). C. 164-179. doi: 10.17223/19988591/36/10
Дыренков С.А. Структура и динамика таежных ельников. Л. : Наука, 1984. 174 с.
Maren I.E., Kapfer J., Aarrestad P.A., Grytnes J.-A., Vandvik V Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient // Ecology. 2018. Vol. 99, № 1. PP. 148-157. doi: 10.1002/ecy.2052
Silveira A.P., Martins F.R., Araujo F.S. Are tree ontogenetic structure and allometric relationship independent of vegetation formation type? A case study with Cordia oncocalyx in the Brazilian caatinga // Acta Oecologica. 2012. Vol. 43. PP. 126-133. doi: 10.1016/j. actao.2012.06.005
Walker L.R., Wardle D.A. Plant succession as an integrator of contrasting ecological time scales // Ecology and Evolution. 2014. Vol. 29, № 9. PP. 504-510. doi: 10.1016/j. tree.2014.07.002
Lithgow D., Martinez M.L., Gallego-Fernandez J.B., Hesp P.A., Flores P., Gachuz S., Rodriguez-Revelo N., Jimenez-Orocio O., Mendoza-Gonzalez G., Alvarez-Molina L.L. Linking Restoration and Ecological Succession // Geomorphology. 2013. Vol. 199. PP. 214-224. doi: 10.1016/j.geomorph.2013.05.007
Prach K., Walker L.R. Four opportunities for studies of ecological succession // Ecology and Evolution. 2011. Vol. 26, № 3, PP. 119-123. doi: 10.1016/j.tree.2010.12.007
Hertzog L.R., Boonyarittichaikij R., Dekeukeleire D., de Groote S.R.E., van Schrojenstein Lantman I.M., Sercu B.K., Smith H.K., de la Pena, E., Vandegehuchte M.L., Bonte D., Martel, A., Verheyen K., Lens L., (...), Baeten, L. Forest fragmentation modulates effects of tree species richness and composition on ecosystem multifunctionality // Ecology. 2019. Vol. 100, № 4. e02653. PP. 1-9. doi: 10.1002/ecy.2653
Chang C.C., Turner B.L. Ecological succession in a changing world // Journal of Ecology. 2019. Vol. 107. PP. 503-509. doi: 10.1111/1365-2745.13132
Furyaev V.V., Vaganov E.A., Tchebakova N.M., Valendik E.N. Effects of fire and climate on successions and structural changes in the Siberian boreal forest // Eurasian Journal of Forest Research. 2001. Vol. 2. PP. 1-15.
Бондарев А.И., Онучин А.А., Читоркин В.В., Соколов В.А. О концептуальных положениях использования и воспроизводства лесов в Сибири // Известия высших учебных заведений. Лесной журнал. 2015. № 6. С. 25-34.
Кедровые леса Сибири / отв. ред. А.С. Исаев. Новосибирск : Наука, Сиб. отд-ние, 1985. 225 с.