Elemental composition and structural features of humic acids from floodplain soils of the Selenga River delta (Transbaikalia, Russia)
Humic acids (HA) play a multifunctional role in the environment, controlling the biogeochemical carbon cycle, the cycle of macro- and microelements, providing nutrients and biostimulants for plant growth, are responsible for soil structure formation, and reduce the effect of toxic substances. Due to the structural heterogeneity of soil organic matter, it is very difficult to determine the composition and properties of humic acids Currently, NMR spectroscopy is the most effective analytical method for obtaining information on the chemical composition and structure of OM. Thus, the problem of studying the composition and structural features of humic acids isolated from the floodplain soils of the Selenga River delta, which are the youngest and most vulnerable areas of the land, is very relevant and practically not reflected in publications. The study was conducted in the delta of the Selenga River (the world's largest freshwater delta) located in the central zone of the southeastern coast of Lake Baikal. It is a foothill tectonic depression with an area of 1,120 km2 filled with deltaic, alluvial and dealluvial sediments. Its territory is located within the Kabansky district of the Republic of Buryatia and is characterized by a significant diversity of environmental conditions due to the complexity of the geomorphological structure and different degrees of hydromorphism. Extraction of HA preparations and their purification were performed by standard methods by extraction with 0.1 n sodium hydroxide solution after preliminary decalcification. Elemental analysis of isolated HA preparations was determined on automatic elemental analyzer "CHNS/O-2400 series II" PerkinElmer (USA). Nuclear magnetic resonance spectra 13C-NMR were taken on spectrometer "Avance 300 MHz" Brucker (Germany) with working frequency 100.53 MHz using solid-phase CP-MAS technique. The humus horizons of the floodplain soils of the Selenga (meadow-marsh, meadow, meadow-saline) according to the WRB classification - Fluvisols, were used as research objects. The average elemental composition of humic acids of the studied soils is rather similar. The carbon content varies in the range 37.4-43.8 mol %, hydrogen 32.3-35.0, oxygen 21.1-25.0, and nitrogen 2.2-2.6. The increase of carbon content and decrease of hydrogen amount in the studied HAs in the transition from Mollic Fluvisols (Salic) to Mollic Fluvisols is explained by the increase of condensation degree, which corresponds to the ecological conditions of soil formation and hydromorphic degree. In general, the HAs of Mollic Fluvisols are more enriched in aromatic fragments than those of Gleyic Fluvisols and Mollic Fluvisols (Salic). It is a more "mature" product of humification. Lower degree of aromaticity as expected in HA Mollic Fluvisols (Salic). This result is supported by the H/C values, which are obtained from elemental composition data and indicates a higher content of less decomposed hydrophilic structures. Studies have shown that general principles of soil structure and content of elements (С, H, O, and N) in soils do not change under the influence of bioclimatic conditions, groundwater regimes, and sediment composition. But when the soil is exposed to groundwater combined with salinization, the rate of OM transformation decreases and leads to an increase in the proportion of unoxidized aliphatic fragments. The article contains 2 Figures, 3 Table and 51 References. The Authors declare no conflict of interest.
Keywords
fluvisols,
alluvial soils,
humic substances,
13С NMR-spectroscopyAuthors
Milkheev Evgeniy Yu. | Institute of General and Experimental Biology SB RAS | evg-milh@rambler.ru |
Chimitdorzhieva Galina D. | Institute of General and Experimental Biology SB RAS | galdorj@gmail.com |
Baldanov Nimbu D. | Buryat State Agricultural Academy named after V.R. Filippova | nimbu_bald@mail.ru |
Всего: 3
References
Martin M.V., Gebuhr C., Daniel O., Wiltshire K.H. Characterization of a humic acid extracted from marine sediment and its influence on the growth of marine diatoms // Journal of the Marine Biological Association of the United Kingdom. 2014. Vol. 94 (5). PP. 895906.
Fernandes A.N., Giovanela M., Esteves V.I. Elemental and spectral properties of peat and soil samples and their respective humic substances //j. Mol. Str. 2010. Vol. 971. PP. 33.
Nebbioso A., Piccolo A. Molecular characterization of dissolved organic matter (DOM): a critical review // Anal. Bioanal. Chem. 2013. Vol. 405. PP. 109-124. 10.1007/s00216- 012-6363-2.
Schaeffer A., Nannipieri P., Kastner M. et al. From humic substances to soil organic matter-microbial contributions. In honour of Konrad Haider and James P. Martin for their outstanding research contribution to soil science // J Soils Sediments. 2015. Vol. 15. PP. 18651881.
Hayes M.H.B., Swift R.S. An appreciation of the contribution of Frank Stevenson to the advancement of studies of soil organic matter and humic substances // J Soils Sediments. 2018. Vol. 18. PP. 1212-1231.
Kleber M., Lehmann J. Humic substances extracted by alkali are invalid proxies for the dynamics and functions of organic matter in terrestrial and aquatic ecosystems //j. Environ. Qual. 2019. Vol. 48. PP. 207-216.
Dou S., Shan J., Song X., Cao R., Wu M., Li C., Guan S. Are humic substances soil microbial residues or unique synthesized compounds? A perspective on their distinctiveness // Pedosphere. 2020. Vol. 30(2). PP. 159-167.
Nobili M., Bravo C., Chen Y. The spontaneous secondary synthesis of soil organic matter components: a critical examination of the soil continuum model theory // Appl. Soil Ecol. 2020. Vol. 154. p. 103655.
Simpson A.J., Kingery W.L., Hayes M.H., Spraul M., Humpfer E., Dvortsak P., Kers-sebaum R., Godejohann M., Hofmann M. Molecular structures and associations of humic substances in the terrestrial environment // Naturwissenschaften. 2002. Vol. 89. PP. 84-88.
Lehmann J., Kleber M. The contentious nature of soil organic matter // Nature. 2015. Vol. 528. PP. 60-68.
Rigobello E.S., Dantas A.D.B., Di Bernardo L, Vieira E.M. Influence of the apparent molecular size of aquatic humic substances on colour removal by coagulation and filtration // Environmental Technology. 2011. Vol. 32. PP. 1767-1777.
Орлов Д.С. Гумусовые кислоты почв и общая теория гумификации. М.: Изд-во МГУ, 1990. 324 с.
Дергачева М. И. Методы почвоведения в археологических исследованиях. Новосибирск: Новосибирский гос. ун-т, 2007. 96 с.
Hatcher P.G., Dria K.J., Kim S., Frazier S.W. Modern analytical studies of humic substances // Soil Sci. 2001. Vol. 166. PP. 770-794.
Leenheer J.A. Systematic approaches to comprehensive analyses of natural organic matter // Ann. Environ. Sci. 2009. Vol. 3. PP. 1-130.
Stevenson F.J. Humus chemistry: genesis, composition, reactions. New York: John Wiley and Sons, 1994. 512 p.
Claridge T.D.W. High-resolution NMR techniques in organic chemistry. Amsterdam: Elsevier Ltd., 2016. 541 p.
Hedges J.I., Eglinton G., Hatcher P.G., Kirchman D.L., Arnosti C., Derenne S., Evershed R.P., Kogel-Knabner I., De Leeuw J.W., Littke R., Michaelis W., Rullkotter J. The molecularly-uncharacterized component of nonliving organic matter in natural environments // Org. Geo-chem. 2000. Vol. 31. PP. 945-958. 10. 1016/S0146-6380(00)00096-6.
Калабин Г.А., Каницкая Л.В., Кушнарев Д.Ф. Количественная спектроскопия ЯМР природного органического сырья и продуктов его переработки. М.: Химия, 2000. 408 с.
Чуков С. Н. Структурно-функциональные параметры органического вещества почв в условиях антропогенного воздействия. СПб.: Изд-во СПбГУ, 2001. 216 с.
Mao J., Cao X., Olk D.C., Chu W., Schmidt-Rohr K. Advanced solid-state NMR spectroscopy of natural organic matter // Progress in Nuclear Magnetic Resonance Spectroscopy. 2017. Vol. 100. PP. 17-51.
Чуков С.Н., Лодыгин Е.Д., Абакумов Е.В. Использование 13С ЯМР-спектроскопии в исследовании органического вещества почв (обзор) // Почвоведение. 2018. № 8. C. 952-964.
Kogel-Knabner I., Rumpel C. Advances in Molecular Approaches for Understanding Soil Organic Matter Composition, Origin, and Turnover: A Historical Overview // Adv. Agron. 2018. Vol. 149. PP. 1-48.
Гынинова А.Б., Корсунов В.М. Почвы Селенгинского дельтового района Прибайкалья // Почвоведение. 2006. № 3. С. 273-281.
Макушкин Э.О. Сравнительная оценка гумусного состояния почв пастбищ и фоновых участков дельты р. Селенга // Агрохимия. 2015. № 12. С. 28-36.
Макушкин Э.О., Сорокин Н.Д., Корсунов В.М. Состояние микробных сообществ почв в различных условиях их поемности в дельте Селенги. Улан-Удэ: Изд-во БНЦ СО РАН, 2007. 160 с.
Сорокин Н.Д., Макушкин Э.О., Корсунов В.М., Афанасова Е.Н., Шахматова Е.Ю. Микробные комплексы гидроморфных почв дельты Селенги (Байкальский регион) // Почвоведение. 2006. № 7. С. 855-860.
Шахматова Е.Ю., Макушкин Э.О., Корсунов В.М. Особенности химического состава почвенно-грунтовых вод пойменных почв дельты Селенги (Байкальский регион) // Почвоведение. 2009. № 6. С. 674-679.
Polyakov V., Abakumov E., Lodygin E., Vasilevich R., Lapidus A. Distribution of Molecular Weight of Humic Substances Isolated from Soils of Tallgrass Temperate Rainforests (Chernevaya Taiga) // Agronomy. 2022. Vol. 12 (8). Р. 1760.
Abakumov E.V., Polyakov V.I., Chukov S.N. Approaches and Methods for Studying Soil Organic Matter in the Carbon Polygons of Russia (Review) // Eurasian Soil Science. 2022. Vol. 55 (7). PP. 849-860.
Lodygin E., Abakumov E. The Impact of Agricultural Use of Retisols on the Molecular Structure of Humic Substances // Agronomy. 2022. Vol. 12 (1). Р. 144.
Polyakov V., Loiko S., Istigechev G., Lapidus A., Abakumov E. Elemental and molecular composition of humic acids isolated from soils of tallgrass temperate rainforests (Cherne-vaya taiga) by1H-13C HECTCOR NMR spectroscopy // Agronomy. 2021. Vol. 11 (10). Р. 1998.
Polyakov V.I., Chegodaeva N.A., Abakumov E.V. Molecular and elemental composition of humic acids isolated from selected soils of the Russian Arctic // Vestnik Tomskogo Gosudarstvennogo Universiteta, Biologiya. 2019. Vol. 47. PP. 6-21.
Chalov S., Thorslund J., Kasimo N., Aybullatov D., Ilyicheva E., Karthe D., Kositsky A., Lychagin M., Nittrouer J., Pavlov M., Pietron J., Shinkareva G., Tarasov M., Garmaev E., Akhtman Y., Jarsjo E. The Selenga River delta: a geochemical barrier protecting Lake Baikal waters // Regional Environmental Change. 2016. PP. 1-15.
Жуков В. М. Климат Бурятской АССР. Улан-Удэ: Бурят. кн. изд-во, 1960. 188 с.
Гынинова А.Б., Шоба С.А., Балсанова Л.Д., Гынинова Б.Д. Почвы дельты реки Селенги (генезис, география, геохимия). Улан-Удэ: Изд-во БНЦ СО РАН, 2012. 344 с.
IUSS Working Group WRB World Reference Base for Soil Resources 2014, update 2015.International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Rome: FAO, 2015. 192 p.
Агрохимические методы исследования почв. М.: Наука, 1975. 656 с.
Орлов Д.С., Гришина Л.А. Практикум по химии гумуса. М.: Изд-во Моск. ун-та, 1981. 273 с.
Orlov D.S. Humic Substances of Soils and General Theory of Humification. 1st ed. London, UK: Taylor & Francis, 1995. 325p.
Убугунова В. И., Убугунов Л.Л., Корсунов В.М., Балабко П.Н. Аллювиальные почвы речных долин бассейна р. Селенги. Улан-Удэ: Изд-во БНЦ СО РАН, 1998. 290 с.
Кленов Б.М. Устойчивость гумуса автоморфных почв Западной Сибири. Новосибирск: Изд-во СО РАН, 2000. 173 с.
Дергачева М.И., Некрасова О.А., Оконешникова М.В., Васильева Д.И., Гаврилов Д.А., Очур К.О., Ондар Е.Э. Соотношение элементов в гуминовых кислотах как источник информации о природной среде формирования почв // Сибирский экологический журнал. 2012. № 5. С. 643-647.
Орлов Д.С., Бирюкова О.Н., Суханова Н.И. Органическое вещество почв Российской Федерации. М.: Наука, 1996. 256 с.
Winkler A., Haumaier L., Zech W. Insoluble alkyl carbon components in soils derive mainly from cutin and suberin // Org. Geochem. 2005. Vol. 36 (4). PP. 519-529.
Knicker H., Hilscher A., Gonzalez-Vila F.J., Almendros G. A new conceptual model for the structural properties of char produced during vegetation fires // Org. Geochem. 2008. Vol. 39(8). PP. 935-939.
Simpson A.J., Simpson M.J. Nuclear magnetic resonance analysis of natural organic matter. Biophysico-chemical processes involving natural nonliving organic matter in environmental systems / eds. by N. Senesi, B. Xing, P.M. Huang. New Jersey: John Wiley & Sons Inc., 2009. PP. 589-650.
Ковалева Н.О., Ковалев И.В. Лигниновые фенолы в почвах как биомаркеры палеорастительности // Почвоведение. 2015. № 9. С. 1073-1086.
Чимитдоржиева Г. Д. Особенности органического вещества криогенных почв // Почвоведение. 1991. № 11. С. 125.
Лодыгин Е. Д., Безносиков В. А., Василевич Р. С. Молекулярный состав гумусовых веществ тундровых почв (13С-ЯМР-спектроскопия) // Почвоведение. 2014. № 5. С. 546552.
Ибраева М.А., Шаухарова Д.Е., Джуманова М. Влияние засоления почв на микробиологическую активность // Почвоведение и агрохимия. 2020. № 2. С. 71-78.