Microbiological factors controllingcarbon cycle in thermokarst water bodies of Western Siberia | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2012. № 3 (19).

Microbiological factors controllingcarbon cycle in thermokarst water bodies of Western Siberia

Results of French-Russian collaborative research that have being conducted since2008 in different regions of Western Siberia are presented. We have identified newfeatures of biogeochemical cycle of carbon transformation in the system of tundralakes and bogs which allow better prediction of the development of the Arctic region.It has been established that the transformation of organic carbon of soil (peat) intocarbon dioxide is most efficient in aqueous solution. In this regard, the main factorsof CO2 evasion to the atmosphere in Western Siberia will be so-called thermokarstlakes that are formed during natural processes of frozen bogs thawing. Given veryhigh coverage of the subarctic zone of Western Siberia by thermokarst lakes (up to80%), the flux of CO2 to the atmosphere from the surface of these lakes is almost anorder of magnitude higher than the total transport of dissolved organic carbon by allSiberian rivers to the Arctic ocean. There is a significant increase in dissolved CO2 andmethane (CH4) concentration with decreasing water body surface area, with the largestsupersaturation with respect to atmospheric CO2 and CH4 in small (< 100 m2) permafrostdepressions filled with thaw water. Dissolved organic carbon (DOC), conductivity, andmetal concentrations also progressively increase from large lakes to thaw ponds anddepressions. As such, small water bodies with surface areas of 1-100 m2 that are notaccounted for in the existing lake and pond databases may significantly contribute toCO2 and CH4 fluxes to the atmosphere, as well as to the stocks of dissolved metals andorganic carbon. An unexpected result is the establishment of dominant role in CO2 andCH4 emission to the atmosphere of very small lakes and permafrost depressions lessthan 100 m2 surface area (< 0.01 ha). These water bodies, almost non-identified fromthe space and non-documented on topographic maps, contribute significantly to thetotal area coverage by water and in total evasion of greenhouse gases from the landsurface to the atmosphere. As a consequence, upon future permafrost thaw, the increasein the number of small water bodies, accompanied by the drainage of large thermokarstlakes to the hydrological network, will likely favor i) the increase of DOC and colloidalmetal stocks in surface aquatic systems, and ii) the enhancement of CO2 and CH4 fluxesfrom the water surface to the atmosphere. According to a conservative estimation thatconsiders that the total area occupied by water bodies in Western Siberia will notchange, this increase in stocks and fluxes could be as high as a factor of ten.

Download file
Counter downloads: 277

Keywords

эмиссия, таяние вечной мерзлоты, биогеохимический цикл углерода, термокарстовые озера, heterotrophic bacterioplankton, permafrost, CO2, biogeochemistry, thermokarst lakes, микробиологическая деструкция органического вещества

Authors

NameOrganizationE-mail
Pokrovsky Oleg S.Institute of Ecological Problems of the North, Russian Academy of Science, Arkhangelsk; Géoscience Environnement Toulouse, Université de Toulouse, CNRS-IRD-OMP, Toulouse, Franceoleg@get.obs-mip.fr
Shirokova Liudmila S.Institute of Ecological Problems of the North, RussianAcademy of Science, ArkhangelskLShirocova@yandex.ru
Kirpotin Sergey N.National Research Tomsk State Universitykirp@ums.tsu.ru
Всего: 3

References

Walter K.M., Smith L.C., Chapin F.S. Methane bubbling from northern lakes: present and future contributions to the global methane budget // Philosophical Transactions of the Royal Society A. 2007. Vol. 365. Р. 1657-1676. doi:10.1098/rsta.2007.2036.
Lehner B., Doll P. Development and validation of a global database of lakes, reservoirs and wetlands // J. Hydrology. 2004. Vol. 296. P. 1-22.
Balcarczyk K.L., Jones Jr. J.B., Jaffé R., Maie N. Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost // Biogeochemistry. 2009. Vol. 94. Р. 255-270. doi: 10.1007/s10533-009-9324-x.
Kling G.W., Kipphut G.W., Miller M.C. The flux of CO2 and CH4 from lakes and rivers in arctic Alaska // Hydrobiologia. 1992. Vol. 240. Р. 23-36.
Bastviken D., Cole J., Pace M., Tranvik L. Methane emissions from lakes: Dependence on lake characteristics, two regional assessments, and a global estimate // Global Biogeochemical Cycles. 2004. Vol. 18. Р. GB4009. doi:10.1029/2004GB002238.
Semiletov I.P., Pipko I.I., Pivovarov N.Ya. et al. Atmospheric carbon emission from North Asian Lakes: a factor of global significance // Atmospheric Environment. 1996. Vol. 30. Р. 1657-1671.
Драбкова В.Г. Зональное изменение интенсивности микробиологических процессов в озерах. Л. : Наука, 1981. 212 с.
Laurion I., Vincent W.F., MacIntyre S. et al. Variability in greenhouse gas emissions from permafrost thaw ponds // Limnology and Oceanography. 2010. Vol. 55. Р. 115-133.
Rantakari M., Kortelainen P. Controls of organic and inorganic carbon in randomly selected Boreal lakes in varied catchments // Biogeochemistry. 2008. Vol. 91. Р. 151-162. doi: 10.1007/s10533-008-9266-8.
Савченко Н.В. Гидробиологический мониторинг озер Западной Сибири и особенности их экологической устойчивости // Биоразнообразие, проблемы экологии Горного Алтая и сопредельных регионов: настоящее, прошлое, будущее : материалы II Международной конференции. 20-24 сентября 2010 г. Горно-Алтайск : РИО ГАГУ, 2009. С. 242-247.
Широкова Л.С., Воробьева Т.Я., Забелина С.А. и др. Характеристика продукционно- деструкционных процессов малых озер Архангельской области // Современные проблемы науки и образования. 2008. № 5. С. 17-24.
Prairie Y.T. Carbocentric limnology: looking back, looking forward // Canadian J. Fisheries Aquatic Sciences. 2008. Vol. 65. Р. 543-548.
Pokrovsky O.S., Viers J., Shirokova L.S. et al. Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in Severnaya Dvina River and its tributary // Chemical Geology. 2010. Vol. 273. Р. 136-149.
Vasyukova E.V., Pokrovsky O.S., Viers J. et al. Trace elements in organic- and iron-rich surficial fluids of the Boreal zone: Assessing colloidal forms via dialysis and ultrafiltration // Geochimica et. Cosmochimika Acta. 2010. Vol. 74. Р. 449-468.
Pokrovsky O.S., Schott J., Dupré B. Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basic terrain in Central Siberia // Geochimica et. Cosmochimika Acta. 2006. Vol. 70. Р. 3239-3260.
Achterberg E.P., Van den Berg C.M.G., Boussemart M., Davison W. Speciation and cycling of trace metals in Esthwaite Water: A productive English lake with seasonal deep-water anoxia // Geochim Geochimica et. Cosmochimika Acta. 1997. Vol. 61. Р. 5233-5253.
Hamilton-Taylor J., Smith E.J., Davison W., Sugiyama M. Resolving and modeling the effects of Fe and Mn redox cycling on trace metal behavior in a seasonally anoxic lake // Geochimica et. Cosmochimika Acta. 2005. Vol. 69. Р. 1947-1960.
Andersson K., Dahlqvist R., Turner D. et al. Colloidal rare earth elements in a boreal river: Changing sources and distributions during the spring flood // Geochimica et. Cosmochimika Acta. 2006. Vol. 70. Р. 3261-3274.
Stolpe B., Hassellöv M. Nanofibrils and other colloidal biopolymers binding trace elements in coastal seawater: Significance for variations in element size distributions // Limnology and Oceanography. 2010. Vol. 55(1). Р. 187-202.
Ingri J., Widerlund A., Land M. et al. Temporal variations in the fractionation of the rare earth elements in a boreal river; the role of colloidal particles // Chemical Geology. 2000. Vol. 166. Р. 23-45.
Pokrovsky O., Schott J. Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia) // Chemical Geology. 2002. Vol. 190. Р. 141-179.
Larsen S., Andersen T., Hessen D.O. The pCO2 in boreal lakes: Organic carbon as a universal predictor? // Global Biogeochem Cycles. 2011. Vol. 25. Р. GB2012. doi: 10.1029/2010GB003864.
Kirpotin S.N., Berezin A., Bazanov V. et al. West Siberian wetlands as indicator and regulator of climate change on the global scale // International Journal of Environmental Studies, Special Issue "Western Siberia". 2009. Vol. 66. Р. 409-421. doi: 10.1080/00207230902753056.
Sobek S., Algesten G., Bergstrom A.-K. et al. The cathcment and climate regulation of pCO2 in boreal lakes // Global Change Biology. 2003. Vol. 9. Р. 630-641.
Kirpotin S., Polishchuk Yu., Zakharova E. et al. One of possible mechanisms of thermokarst lakes drainage in West-Siberian North // International Journal of Environmental Studies. 2008. Vol. 65. Р. 631-635.
Кирпотин С.Н., Полищук Ю.М., Брыксина Н.А. Динамика площадей термокарстовых озер в зонах сплошной и прерывистой криолитозон зоны Западной Сибири в условиях глобального потепления // Вестник Томского государственного университета. 2008. № 311. С. 185-189.
Downing J.A., Prairie Y.T., Cole J.J. et al. The global abundance and size distribution of lakes, ponds, and impoundments // Limnology and Oceanography. 2006. Vol. 51(5). Р. 2388-2397.
Audry S., Pokrovsky O.S., Shirokova L.S. et al. Early diagenesis processes and their effect on organic matter mineralization and trace element post-depositional redistribution in Western Siberia thermokarst lakes // Biogeosciences Discuss. 2011. Vol. 8. Р. 8845-8894. doi:10.5194/bgd-8-8845-2011.
Pokrovsky O.S., Shirokova L.S., Kirpotin S.N. et al. Effect of permafrost thawing on the organic carbon and metal speciation in thermokarst lakes of Western Siberia // Biogeosciences, Special issue Siberian Arctic Land-Shelf-Atmosphere Interface. 2011. Vol. 8. Р. 565-583. doi:10.5194/bg-8-565-2011.
Duff K.E., Laing T.E., Smol J.P., Lean D.R.S. Limnological characteristics of lakes located across arctic treeline in northern Russia // Hydrobiologia. 1999. Vol. 391. Р. 205-222.
Solovieva N., Jones V.J., Nazarova L. et al. Palaeolimnological evidence for recent climatic change in lakes from the northern Urals, arctic Russia // J. Paleolimnology. 2005. Vol. 33. Р. 463-482.
Wetterich S., Herzschuh U., Meyer H. et al. Evaporation effects as reflected in freshwaters and ostracod calcite from modern environments in Central and Northeast Yakutia (East Siberia, Russia) // Hydrobiologia. 2008. Vol. 614. Р. 171-195.
Kling G.W., O'Brien W.J., Miller M.C., Hershey A.E. The biogeochemistry and zoogeography of lakes and rivers in arctic Alaska // Hydrobiologia. 1992. Vol. 240. Р. 1-14.
Kumke T., Ksenofontova M., Pestryakova L. et al. Limnological characteristics of lakes in the lowlands of Central Yakutia, Russia // J. Limnology. 2007. Vol. 66. Р. 40-53.
Michelutti N., Douglas M.S.V., Muir D.C.G. et al. Limnological characteristics of 38 lakes and ponds on Axel Heiberg Island, High Arctic Canada // International Review of Hydrobiology. 2002. Vol. 87. Р. 385-399.
Antoniades D., Douglas M.S.V., Smol J.P. The physical and chemical limnology of 24 ponds and one lake from Isachsen, Ellef Ringnes Island // International Review of Hydrobiology. 2003. Vol. 88. Р. 519-538.
Lim D.S.S., Douglas M.S.V., Smol J.P., Lean D.R.S. Physical and chemical limnological characteristics of 38 lakes and ponds on Bathurst Island, Nunavut, Canadian High Arctic // International Review of Hydrobiology. 2001. Vol. 86. Р. 1-22.
Michelutti N., Douglas M.S.V., Lean D.R.S., Smol J.P. Physical and chemical limnology of 34 ultra-oligotrophic lakes and ponds near Wanniatt Bay, Victoria Island, Arctic Canada // Hydrobiologia. 2002. Vol. 482. Р. 1-13.
Lim D.S.S., Douglas M.S.V., Smol J.P. Limnology of 46 lakes and ponds on Banks Island, N.W.T., Canadian Arctic Archipelago // Hydrobiologia. 2005. Vol. 545. Р. 11-32.
Coté G., Pienitz R., Velle G., Wang X. Impact of geese on the limnology of lakes and ponds from Bylot Island (Nunavut, Canada) // International Review of Hydrobiology. 2010. Vol. 95. Р. 105-129.
Rühland K., Smol J.P. Limnological characteristics of 70 lakes spanning Arctic treeline from Coronation Gulf to Great Slave lake in the Central Northwest territories, Canada // International Review of Hydrobiology. 1998. Vol. 83. Р. 183-203.
Pienitz R., Smol J.P., Lean D.R.S. Physical and chemical limnology of 24 lakes located between Yelloknife and Contwoyto Lake, Northwest Territories (Canada) // Canadian J. Fisheries Aquatic Sciences. 1997. Vol. 54. Р. 347-358.
Pienitz R., Smol J.P., Lean D.R.S. Physical and chemical limnology of 59 lakes located between the southern Yukon and the Tuktoyaktuk Peninsula, Northwest Territories (Canada) // Canadian J. Fisheries Aquatic Sciences. 1997. Vol. 54. Р. 330-346.
Riordan B., Verbyla D., McGuire A.D. Shrinking ponds in subarctic Alaska based on 1950- 2002 remotely sensed images // J. Geophysical Research. 2006. Vol. 11. Р. G04002. doi: 10.1029/2005JG000150.
Zakharova E.A., Kouraev A.V., Kolmakova M.V. et al. The modern hydrological regime of the northern part of Western Siberia from in situ and satellite observations // International Journal of Environmental Studies. 2009. Vol. 66. Р. 447-463. doi: 10.1080/00207230902823578.
Michmerhuizen C.M., Striegl R.G., McDonald M.E. Potential methane emission from northtemperate lakes following ice melt // Limnology and Oceanography. 1996. Vol. 41(5). Р. 985-991.
Hinkel K.M., Eisner W.R., Bockheim J.G. et al. Spatial Extent, Age, and Carbon Stoks in Drained Thaw Lake Basins on the Barrow Peninsula, Alaska // Arctic, Antarctic, and Alpine Research. 2003. Vol. 35. Р. 291-300.
Striegl R.G., Michmerhuizen C.M. Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes // Limnology and Oceanography. 1998. Vol. 43. Р. 1519-1529.
Friborg T., Soegaard H., Christensen T.R. et al. Siberian wetlands: Where a sink is a source // Geophysical Research Letters. 2003. Vol. 30. Р. 2129. doi: 10.1029/2003GL017797.
Pokrovsky O.S., Shirokova L.S., Kirpotin S.N. et al. Effect of permafrost thawing on the organic carbon and trace element colloidal speciation and microbial activity in thermokarst lakes of Western Siberia // Biogeosciences Discuss. 2010. Vol. 7. Р. 8041-8086. doi: 10.5194/bgd-7-8041-2010.
Arneth A., Kurbatova J., Kolle O., Shibistova O.B., Lloyd J. Comparative ecosystematmosphere exchange of energy and mass in a European Russian and central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes // Tellus. 2002. Vol. 548. Р. 514- 530.
Kortelainen P., Rantakari M., Huttunen J.T. et al. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes // Global Change Biology. 2006. Vol. 12. Р. 1554-1567.
Shirokova L.S., Pokrovsky O.S. Biogeochemistry of thermokarst lakes in discontinuous and sporadic permafrost zone of Western Siberia // Geophysical Research Abstracts. EGU General Assembly 2010. Vol. 13. P. EGU2011-3714. URL: http://meetingorganizer. copernicus.org/EGU2011/EGU2011-3714.pdf
Pokrovsky O.S., Shirokova L.S., Kirpotin S.N., Dupre B. Effect of permafrost thawing on the organic carbon and metal speciation // Geophysical Research Abstracts. EGU General Assembly 2010. Vol. 12. Р. EGU2010-1694.
Wickland K.P., Striegl R.G., Neff J.C., Sachs Th. Effects of permafrost melting on CO2 and CH4 exchange of a poorly drained black spruce lowland // J. Geophysical Research. 2006. Vol. 111. Р. G02011. doi: 10.1029/2005JG000099.
Vitt D.H., Halsey L.A., Bauer I.E., Campbell C. Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene // Canadian J. Earth Sciences. 2000. Vol. 37(5). Р. 683-693.
Kling G.W., Kipphut G.W., Miller M.C. The flux of CO2 and CH4 from lakes and rivers in arctic Alaska // Hydrobiologia. 1992. Vol. 240. Р. 23-36.
Shirokova L.S., Pokrovsky O.S., Kirpotin S.N., Dupré B. Heterotrophic bacterio-plankton in thawed lakes of northern part of Western Siberia controls the CO2 flux to the atmosphere // International Journal of Environmental Studies, Special Issue "Western Siberia" 66. 2009. Vol. 4. Р. 433-445. doi: 10.1080/00207230902758071.
Heikkinen J.E.P., Virtanen T., Huttunen J.T. et al. Carbon balance in east European tundra // Global Biogeochem. Cycles. 2004. Vol. 18. Р. GB1023. doi: 10.1029/2003GB002054.
Ramlal P.S., Hesslein R.H., Hecky R.E. et al. The organic carbon budget of a shallow Arctic tundra lake on the Tuktoyaktuk Peninsula, N.W.T., Canada // Biogeochemistry. 1994. Vol. 24. Р. 145-172.
Walter K.M., Smith L.C., Chapin F.S. Methane bubbling from northern lakes: present and future contributions to the global methane budget // Philosophical Transactions of the Royal Society A. 2007. Vol. 365. Р. 1657-1676. doi:10.1098/rsta.2007.2036.
Ripo M.E., Huttunen J.T., Naumov A.V. et al. Release of CO2 and CH4 from small wetlands lakes in Western Siberia // Tellus. 2007. Vol. 59B. Р. 788-796. doi: 10.1111/j.1600- 0889.2007.00301.x
Walter K.M., Zimov S.A., Chanton J.P., Verbyla D., Chapin III F.S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming // Nature. 206. Vol. 443. Р. 71-75.
Turetsky M.R., Wieder R.K., Vitt D.H. Boreal peatland C fluxes under varying permafrost regimes // Soil Biology & Biochemistry. 2002. Vol. 34. Р. 907-912.
Christensen T.R., Johansson T., Akerman H.J. et al. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions // Geophysical Research Letters. 2004. Vol. 31. L04501. doi: 10.1029/2003GL018680.
Smith L.C., Sheng Y., McDonald G.M., Hinzman L.D. Disappearing Arctic lakes // Science. 2005. Vol. 308. Р. 1429.
Payette S., Delwaide A., Caccianiga M., Beauchemin M. Accelerated thawing of subarctic permafrost over the last 50 years. Geophys // Geographical Research Letters. 2004. Vol. 31. L18208. doi: 10.1029/2004GL020358.
Jorgenson M.T., Racine C.H., Walters, J.C., Osterkamp T.E. Permafrost degradation and ecological changes associated with a warming in central Alaska // Climate Change. 2001. Vol. 48. Р. 551-579.
Schuur E.A.G., Bockhein J., Canadel J.P. et al. Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle // BioScience. 2008. Vol. 58. Р. 701-714.
Romanosvky V.E., Smith S.L., Christiansen H.H. Permafrost thermal state in the polar northern hemisphere during International Polar Year 2007-2009: synthesis // Permafrost Periglacial Processes. 2010. Vol. 21. Р. 106-116.
Zimov S.A., Voropaev Y.V., Semiletov I.P. et al. North Siberian lakes: a methane source fueled by Pleistocene Carbon // Science. 1997. Vol. 277. Р. 800-802.
Десяткин Р.В. Почвообразование в термокарстовых котловинах - аласах криолитозоны. Новосибирск : Наука, 2008. 323 с.
Desyatkin A.R., Takakai F., Fedorov P. et al. CH4 emission from different stages of thermokarst formation in Central Yakutia, East Siberia // Soil Science and Plant Nutrition. 2009. Vol. 55. Р. 558-570. doi: 10.1111/j.1747-0765.2009.00389.
 Microbiological factors controllingcarbon cycle in thermokarst water bodies of Western Siberia | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2012. № 3 (19).

Microbiological factors controllingcarbon cycle in thermokarst water bodies of Western Siberia | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2012. № 3 (19).

Download full-text version
Counter downloads: 1370