Morphological and biochemical characteristics of potato plants expressing the invertase gene SUC2 from Saccharomyces cerevisiae, under cultivation in vitro | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2014. № 4 (28).

Morphological and biochemical characteristics of potato plants expressing the invertase gene SUC2 from Saccharomyces cerevisiae, under cultivation in vitro

According to the main heterotrophy of the plants grown in vitro, disaccharide of sucrose as a carbohydrate source is used the most often. However, in the plant cells sucrose can’t be utilized for metabolism. Before using it must be split into gexoses by, for example, the key enzyme of carbohydrate metabolism-invertase. Assuming the direct contact of the root system with the nutrition medium, the apoplast invertase catalyzing hydrolysis of sucrose in the unoccupied cellular space (apoplast) is of a special interest. In this study, we assessed the influence of the constitutive expression of target-oriented gene of suc2, encoding extracellular invertase of the Saccharomyces cerevisiae yeasts (apoplastic version of enzyme localization) on morphological, physiological and biochemical traits of transformed potato grown in vitro in nonhormone nutritive medium of Murashige-Skooge (MS-medium). The comparison of various sugars (glucose, fructose and sucrose) showed that 2% sucrose in the medium is the best carbohydrate source for potato growth. We found out that during growth and development of the plants in MS-medium containing 2% sucrose the osmotic potential decreased, which indicated active assimilation of mineral and organic compounds. Meanwhile, the transformants compared to the control (non-transformed) plants utilized osmoticly active compounds (mainly, sucrose) more intensively. Sugar chromatographic assay in the leaves of both plants revealed dominant content of sucrose and glucose whereas fructose content was minor. The increased activity of the apoplastic invertase in transformants compared to that in the control plants promoted more active accumulation of metabolically active sugars: fructose in the apoplast, glucose and sucrose in the leaves; and especially, glucose in the roots. The inhibition of the growth by an increased glucose concentration in the transformants tissues was recorded. Morphological and metric analysis showed that the transformants had some decreased growth parameters (shoot length, the number of internodes, fresh biomass of the roots and leaves) and more watered tissues compared to those of the control plants. Morphological and biochemical difference between the plant lines is under discussion from the point of physiological role of the sugars and apoplastic invertase in plant life. Acknowledgments: The authors express their gratitude to the staff of M.Kh. Chailakhyan Laboratory of signal systems of ontogeny control IPP RAS and the group of Dr. Willmitzer (Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany) for providing potato plants for research. The article contains 5 Fig., 3 Tables, 32 Ref.

Download file
Counter downloads: 268

Keywords

gene suc2, Solanum tuberosum L, apoplastic fluid, Saccharomyces cerevisiae, invertase, culture in vitro, osmotic potential, sugars

Authors

NameOrganizationE-mail
Deryabin Alexander N.Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences (Moscow)anderyabin@mail.ru
Trunova Tamara I.Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences (Moscow)trunova@ippras.ru
Всего: 2

References

Rook F., Bevan M.W. Genetic approaches to understanding sugar-response pathways // J. Exp. Bot. 2003. Vol. 54. P. 495-501.
Ryan C.A., Farmer E.E. Oligosaccharide signals in plants: a current assessment // Ann. Rev. Plant Physiol. Plant Mol. Biol. 1991. Vol. 42. P. 651-674.
Andjelkovic U., Picuric S., Vujcic Z. Purification and characterisation of Saeeharomyees eerevisiae external invertase isoforms // Food Chem. 2010. Vol. 120. P. 799-804.
Гамалей Ю.В. Транспортная система сосудистых растений. Происхождение, структура, функции, развитие, анализ разнообразия типов по таксономическим и эколого-географическим группам растений, эволюция и экологическая специализация транспортной системы. СПб. : Изд-во СПбГУ, 2004. 424 с.
Соколова С.В., Бурмистрова Н.А., Дубинина И.М., Бураханова Е.А., Кузовкина И.Н., Красавина М.С. Внутриклеточная сахароза и активность некоторых ферментов её метаболизации // Доклады АН. 1999. Т. 368, № 1. С. 139-141.
Nguyen Q.Th., Kozai T. Environmental effects on the growth ofplantlets in micropropagation // Environ. Control in Biol. 1998. Vol. 36 (2). P. 59-75.
Бробст К.М.Газожидкостная хроматография триметилсилильных производных сахаров // Методы исследования углеводов. Под. ред. Ф.Я. Хорлина. М. : Мир, 1975. С. 9-13.
Туркина Н.В., Соколова С.В. Методы определения моносахаридов и олигосахаридов // Биохимические методы в физиологии растений. М. : Наука, 1971. С. 7-34.
Hon W.-Ch., Griffith M., Chong P., Yang D.S.C. Extraction and isolation of antifreeze proteins from winter rye (Seeale eereale L.) leaves // Plant Physiol. 1994. Vol. 104. P. 971980.
Wyn Jones R.G., Gorham J. Osmoregulation. In: Encyclopaedia of plant physiology. N.S. Physiological plant ecology. Vol. 12C / eds. O.L. Lange, P.S. Nobel, C.B. Osmond, H. Zeigler. Springer Verlag, Heidelberg. 1983. P. 35-58.
Дерябин А.Н., Бердичевец И.Н., Бураханова Е.А., Трунова Т.И. Характеристика внеклеточной инвертазы Saccharomyces cerevisiae в условиях гетерологичной экспрессии гена suc2 в растениях Solanum tuberosum // Известия РАН. Серия биологическая. 2014. № 1. С. 22-29.
Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol. Plant. 1962. Vol. 15, № 3. P. 473-497.
Rocha-Sosa M., Sonnewald U., Frommer W., Stratmann M., Schell J., Willmeitzer L. Both developmental and metabolic signals activate the promoter of a class 1 patatin gene // EMBO J. 1989. Vol. 8. P. 23-29.
Наумкина Е.М., Болякина Ю.П., Романов Г.А. Органоспецифичность и индуцибельность функционирования промотора пататина класса I картофеля в трансгенном арабидопсисе // Физиология растений. 2007. Т. 54, № 3. С. 397-408.
Mignery G.A., Pikaard C.S., Park W.D. Molecular characterization of the patatin multigene family of potato // Gene. 1988. Vol. 62. P. 27-41.
Синькевич М.С., Нарайкина Н.В., Трунова Т.И. Участие сахаров в системе антиоксидантной защиты от индуцированного паракватом окислительного стресса у картофеля, трансформированного геном инвертазы дрожжей // Доклады АН. 2010. Т. 34, № 4. С. 501-506.
Deryabin A.N., Dubinina I.M., Burakhanova E.A., Astakhova N.V., Sabelnikova E.P., Sinkevich M.S., Trunova T.I. Tolerance to low temperature of potato plants transformed with yeast invertase gene // Acta Agrobotanica. 2004. Vol. 57, № 1-2. P. 31-39.
Deryabin A.N., Dubinina I.M., Burakhanova E.A., Astakhova N.V., Sabelnikova E.P., Trunova T.I. Influence expressing yeast-derived invertase gene in potato plants on membranes lipid peroxidation at low temperature // J. Therm. Biol. 2005. Vol. 30, № 1. P. 73-77.
Дерябин А.Н., Трунова Т.И., Дубинина И.М., Бураханова Е.А., Сабельникова Е.П., Крылова Е.М., Романов Г.А. Устойчивость к гипотермии растений картофеля, трансформированных геном дрожжевой инвертазы, находящимся под контролем промотора пататина В33 // Физиология растений. 2003. Т. 50, № 4. С. 505-510.
Дерябин А.Н., Синькевич М.С., Климов С.В., Астахова Н.В., Трунова Т.И. Особенности СО<sub>2</sub>-газообмена и структурной организации хлоропластов растений картофеля, трансформированных геном дрожжевой инвертазы, в условиях гипотермии // Физиология растений. 2007. Т. 54, № 4. С. 511-516.
Sonnewald U., Hajlrezaei M.-R., Kossmann J., Heyer A., Thethewey R.N., Willmitzer L. Increased potato tuber size resulting from apoplastic expression of a yeast invertase // Nature Biotech. 1997. Vol. 15. P. 794-797.
Frommer W., Sonnewald U. Molecular analysis of carbon partitioning in solanaceous species // J. Exp. Bot. 1995. Vol. 46. P. 587-607.
Gupta A.K., Kaur N. Sugar signaling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants // J. BioSci. 2005. Vol. 30. P. 761-776.
Von Schaewen A., Stitt M., Schmidt R., Sonnewald U., Willmitzer L. Expression of a yeastderived invertase in the cell wall of tobacco and arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants // EMBO J. 1990. Vol. 9. P. 3033-3044.
Аксенова Н.П., Константинова Т.Н., Голяновская С.А., Коссманн Й., Вилльмитцер Л., Романов Г.А. Генетические трансформанты картофеля как модель для изучения гормональной и углеводной регуляции клубнеобразования // Физиология растений. 2000. Т. 47. С. 420-430.
Vargas W.A., Salerno G.L. The Cinderella story of sucrose hydrolysis: alkaline/neutral invertases, from cyanobacteria to unforeseen roles in plant cytosol and organelles // Plant Science. 2010. Vol. 178, № 1. P. 1-8.
Smeekens S., Ma J., Hanson J., Rolland F. Sugar signals and molecular networks controlling plant growth // Current Opinion in Plant Biology. 2010. Vol. 3. P. 273-278.
Fotopoulos V. Plant invertases: structure, function and regulation of a diverse enzyme family // J. Biol. Res. 2005. Vol. 4. P. 127-137.
Трофимец Л.Н., Остапенко Д.П., Бойко В.В., Зейрук С.В., Донец Н.В. Оздоровление и ускоренное размножение семенного картофеля (Методические рекомендации). М. : ВАСХНИЛ, 1985. 35 с.
Tovar P., Estrada R., Schilde-Rentschler L., Dodds J.H. Induction and use of in vitro potato tuber // CIP Circular. 1985. Vol. 13, № 4. P. 1-5.
Yu W.-C., Joyce P.J., Cameron D.C., Mc Cown B.H. Sucrose utilization during potato microtuber growth in bioreactors // Plant Cell Rep. 2000. Vol. 19. P. 407-413.
Головацкая И.Ф., Дорофеев В.Ю., Медведева Ю.В., Никифоров П.Е., Карначук Р.А. Оптимизация условий освещения при культивировании микроклонов Solanum tuberosum L. сорта Луговской // Вестник Томского государственного университета. Биология. 2013. № 4 (24). С. 133-144.
 Morphological and biochemical characteristics of potato plants expressing the invertase gene SUC2 from Saccharomyces cerevisiae, under cultivation <i>in vitro</i> | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2014. № 4 (28).

Morphological and biochemical characteristics of potato plants expressing the invertase gene SUC2 from Saccharomyces cerevisiae, under cultivation in vitro | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2014. № 4 (28).

Download full-text version
Counter downloads: 2461