Vector DNA fragments integrating into transgenic carrot genome during Agrobacterium-mediated transformation | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2015. № 4(32).

Vector DNA fragments integrating into transgenic carrot genome during Agrobacterium-mediated transformation

Insertion of foreign genes into plants using T-DNA is one of the major techniques for creating stable strains of transgenic plants. This technique, however, is prone to errors, in which vector backbone sequences are also inserted into the plant genome. In present work we assess the rate and diversity of such undesirable vector insertion using sampling of transgenic carrot (Daucus carota L.) plants. We have demonstrated that various fragments of vector DNA are transferred to the genome of transgenic carrot plants due to the errors in T-DNA processing. Totally, 17 types of vector DNA fragments were detected. We found vector sequences in 43 of the 119 analyzed plants (36.1%). The fragments can either be very small (300-400 bp) or contain the entire vector sequence (8600 bp in the case of plasmid pBi121). We have also demonstrated that both T-DNA borders can be erroneously determined and cut. Our data confirm the hypothesis that the error in identification of the left terminal repeat occurs during transfer of the entire vector sequence into the plant genome, as the number of the vector sequences adjacent to the left terminal repeat (22.7% 27 plants carrying such fragments) exceeds the number of those adjacent to the right terminal repeat (15.1% 18 plants carrying such fragments). Our data comply with the published data, stating that a precise cut in the region of the right terminal repeat is an important stage in T-DNA processing. Our work also showed that a vector sequence can be inserted independently of T-DNA into the same plant that carries an incorrectly excised T-DNA. We have found four plants (3.4%) which carry vector fragments that were inserted independently of T-DNA. Presumably, the transfer rate of the vector fragments independently of T-DNA during Agrobacterium-mediated transformation can be even higher. Some part of the transformed plants may contain only a vector fragment and lack T-DNA, such plants will be eliminated during selection. The regions of vector DNA from two carrot plants inserted adjacent to T-DNA into the genome of two carrot plants were cloned and sequenced. The search for homologous sequences in GenBank confirmed that they originated from the plasmid pBI121, used for producing these transgenic plants. Thus, the transfer of vector sequences that is an undesirable, but apparently at present unavoidable part of the mechanism of T-DNA transfer, should be kept in mind when producing transgenic plants.

Download file
Counter downloads: 348

Keywords

трансгенные растения, краевые векторные последовательности, встраивание Т-ДНК, transgenic plants, vector backbone sequences, T-DNA integration, Agrobacterium tumefaciens, Agrobacterium tumefaciens

Authors

NameOrganizationE-mail
Permyakova Natalya V.Siberian Branch of the Russian Academy of Sciences (Novosibirsk)puh@bionet.nsc.ru
Deineko Elena V.Siberian Branch of the Russian Academy of Sciences (Novosibirsk); Tomsk State Universitydeineko@bionet.nsc.ru
Всего: 2

References

Tzfira T., Citovsky V. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology // Curr. Opin. Biotechnol. 2006. Vol. 17, № 2. P. 147-154.
Stachel S.E., Timmerman B., ZambryskiP. Activation of Agrobacterium tumefaciens vir gene expression generates multiple single-stranded T-strand molecules from the pTiA6 T-region: requirement for 5' virD gene products // EMBO J. 1987. Vol. 6, № 4. P. 857-863.
Martineau B., Voelker T.A., Sanders R.A. On Defining T-DNA // Plant Cell. 1994. Vol. 6, № 8. P. 1032-1033.
Ramanathan V., Veluthambi K. Transfer of non-T-DNA portions of the Agrobacterium tumefaciens Ti plasmid pTiA6 from the left terminus of TL-DNA // Plant Mol. Biol. 1995. Vol. 28, № 6. P. 1149-1154.
Van der Graaff E., den Dulk-Ras A., Hooykaas P.J. Deviating T-DNA transfer from Agrobacterium tumefaciens to plants // Plant Mol. Biol. 1996. Vol. 31, № 3. P. 677-681.
Wenck A., CzakoM., KanevskiI., MartonL. Frequent collinear long transfer ofDNA inclusive of the whole binary vector during Agrobacterium-mediated transformation // Plant Mol. Biol. 1997. Vol. 34, № 6. P. 913-922.
Kononov M.E., Bassuner B., Gelvin S.B. Integration of T-DNA binary vector "backbone" sequences into the tobacco genome: evidence for multiple complex patterns of integration // Plant J. 1997. Vol. 11, № 5. P. 945-957.
Jakowitsch J., Papp I., Moscone E.A., van der Winden J., Matzke M., Matzke A.J.M. Molecular and cytogenetic characterization of a transgene locus that induces silencing and methylation of homologous promoters in trans // Plant J. 1999. Vol. 17, № 2. P. 131-140.
De Buck S., de Wilde C., van Montagu M., Depicker A. T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium -mediated transformation // Mol. Breed. 2000. Vol. 6. P. 459-468.
Yin Z., Wang G.-L. Evidence of multiple complex patterns of T-DNA integration into the rice genome // Theor. Appl. Genet. 2000. Vol. 100, № 3-4. P. 461-470.
Meza T.J., Stangeland B., Mercy I.S., Skarn M., Nymoen D.A., Berg A., Butenko M.A., Hakelien A.-M., Haslekas C., Meza-Zepeda L.A., Aalen R.B. Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing // Nucleic Acids Res. 2002. Vol. 30, № 20. P. 4556-4566.
Iglesias V.A., Moscone E.A., Papp I., Neuhuber F., Michalowski S., Phelan T., Spiker S., Matzke M., Matzke A.J.M. Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco // Plant Cell. 1997. Vol. 9, № 8. P. 1251-1264.
Muller A.E., Kamisugi Y., Grtineberg R., Niedenhof I., Horold R.J., Meyer P. Palindromic sequences and A+T-rich DNA elements promote illegitimate recombination in Nicotiana tabacum // J. Mol. Biol. 1999. Vol. 291, № 1. P. 29-46.
Linden R.M., Ward P., Giraud C., Winocour E., Berns K.I. Site-specific integration by adeno-associated virus // Proc. Natl. Acad. Sci. USA. 1996. Vol. 93, № 21. P. 11288-11294.
Paul M., Ma J.K.-C. Plant-made pharmaceuticals: leading products and production platforms // Biotechnol. Appl. Biochem. 2011. Vol. 58, № 1. P. 58-67.
Guan Z., Guo B., Huo Y., Guan Z., Dai J., Wei Y. Recent advances and safety issues of transgenic plant-derived vaccines // Appl. Microbiol. Biotechnol. 2013. Vol. 97, № 7. P. 2817-2840.
Uvarova E.A., Belavin P.A., Permyakova N.V., Zagorskaya A.A., Nosareva O.V., Kakimzhanova A.A., Deineko E.V. Oral immunogenicity of plant-made Mycobacterium tuberculosis ESAT6 and CFP10 // Biomed Res. Int. 2013. P. 316304.
Yakushenko E., Lopatnikova J., Khrapov E., Deineko E., Filipenko M., Voronina E., Turchinovich A., Filipenko E., Pukhnatcheva N., Tukavin G., Schmikova N., Shumny V., Sennikov S., Kozlov V. Use of transgenic carrot plants producing human interleukin-18 for modulation of mouse immune response // New Research on Biotechnology in Biology and Medicine /ed. by A.M. Egorov и G. Zaikov. New York, USA : Nova Science Publishers, 2006. P. 97-107.
Дейнеко Е.В., ЗагорскаяА.А., Поздняков С.Г., ФилипенкоЕ.А., ПермяковаН.В., Сидорчук Ю.В., Уварова Е.А., Позднякова Л.Д., Шумный В.К., Власов В.В., Хэммонд Р.В., Щелкунов С.Н. Анализ продукции М-антигена вируса гепатита В в листьях трансгенных растений моркови // Доклады Академии наук. 2009. № 3. С. 76-79.
Draper J., Scott R., Armitidge F. Plant genetic transformation and gene expression: a laboratory manual. Boston : Blackwell Scientific Publications, 1988. 355 p.
Ochman H., Ajioka J.W., Garza D., Hartl D.L. Inverse polymerase chain reaction // BioTechnology. 1990. Vol. 8, № 8. P. 759-760.
Kim S.-R., Lee J., Jun S.-H., Park S., Kang H.-G., Kwon S., An G. Transgene structures in T-DNA-inserted rice plants // Plant Mol. Biol. 2003. Vol. 52, № 4. P. 761-773.
Lamphear B.J., Barker D.K., Brooks C.A., Delaney D.E., Lane J.R., Beifuss K., Love R., Thompson K., Mayor J., Clough R., Harkey R., Poage M., Drees C., Horn M.E., Streatfield S.J., Nikolov Z., Woodard S.L., Hood E.E., Jilka J.M., Howard J.A. Expression of the sweet protein brazzein in maize for production of a new commercial sweetener // Plant Biotechnol. J. 2005. Vol. 3, № 1. P. 103-114.
Kuraya Y., Ohta S., Fukuda M., Hiei Y., Murai N., Hamada K., Ueki J., Imaseki H., Komari T. Suppression of transfer of non-T-DNA vector backbone sequences by multiple left border repeats in vectors for transformation of higher plants mediated by Agrobacterium tumefaciens // Mol. Breed. 2004. Vol. 14, № 3. P. 309-320.
Podevin N., De Buck S., De Wilde C., Depicker A. Insights into recognition of the T-DNA border repeats as termination sites for T-strand synthesis by Agrobacterium tumefaciens // Transgenic Res. 2006. Vol. 15, № 5. P. 557-571.
Kondrak M., van der Meer IM., Banfalvi Z. Generation of marker- and backbone-free transgenic potatoes by site-specific recombination and a bi-functional marker gene in a non-regular one-border agrobacterium transformation vector // Transgenic Res. 2006. Vol. 15, № 6. P. 729-737.
Hanson B., Engler D., Moy Y., Newman B., Ralston E., Gutterson N. A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences // Plant J. 1999. Vol. 19, № 6. P. 727-734.
Zhang J., Guo D., Chang Y., You C., Li X., Dai X., Weng Q., Zhang J., Chen G., Li X., Liu H., Han B., Zhang Q., Wu C. Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library // Plant J. 2007. Vol. 49, № 5. P. 947-959.
 Vector DNA fragments integrating into transgenic carrot genome during Agrobacterium-mediated transformation | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2015. № 4(32).

Vector DNA fragments integrating into transgenic carrot genome during Agrobacterium-mediated transformation | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2015. № 4(32).

Download full-text version
Counter downloads: 1795