Comparison of terrain-based drift models to improve the quality of soil predictive mapping at a field scale | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2016. № 4 (36). DOI: 10.17223/19988591/36/2

Comparison of terrain-based drift models to improve the quality of soil predictive mapping at a field scale

The ecological, economic, and agricultural benefits of accurate interpolation of spatial distribution patterns of soil properties are well recognized. In the present study different approaches to build the drift model for the regression kriging are analyzed and compared for estimating the spatial variation of humus and physical clay at soil depth (0-20 cm) in Tatarstan, Russian Federation. The soil sampling was performed according to an agrochemical sampling design: the field was divided into 60 sections; within each section 12-15 sampling points were taken using a hand auger at the depth of 10-20 cm to produce one mixed sample. Three terrain-based drift models: principal component regression (PCR), partial least squares (PLS), and random forest were used to predict the spatial distribution of humus and physical clay. Cross-validation was applied to evaluate the accuracy of interpolation methods through mean error (ME), root mean square error (RMSE), root mean square standardized error (RMSSE), and ratio of the observed and the predicted variances (RVar). The results indicate that ordinary kriging (OK) is superior when the data have strong spatial dependence. But in other cases, the PLS approach had the best prediction performance.

Download file
Counter downloads: 318

Keywords

physical clay, humus, regression kriging, prediction, geostatistics, spatial interpolation, физическая глина, гумус, регрессионный кригинг, геостатистика, прогнозирование, пространственная интерполяция

Authors

NameOrganizationE-mail
Ryazanov Stanislav S.Research Institute for Problems of Ecology and Mineral Wealth Use, Tatarstan Academy of Scienceserydit@yandex.ru
Sahabiev Ilnaz A.Research Institute for Problems of Ecology and Mineral Wealth Use, Tatarstan Academy of Sciencesilnassoil@yandex.ru
Всего: 2

References

Mevik B.-H., Wehrens R., Liland K.H. Partial Least Squares and Principal Component Regression. R package version 2.5-0.; 2015. [Electronic resource]. Available at: https:// cran.r-project.org/web/packages/pls/index.html (accessed 05.10.2016)
Liaw A., Wiener M. Classification and Regression by random Forest. R News. 2002;2(3):18-22.
Cambardella C., Moorman T., Novak J., Parkin T., Karlen D., Turco R., Konopka A. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994;58:1501-1511. doi: 10.2136/sssaj1994.03615995005800050033x
Li J., Heap A.D. A Review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23. 137 p.
R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. [Electronic resource]. Available at: http:// www.R-project.org/ (accessed 05.10.2016)
James G., Witten D., Hastie T., Tibshirani R. An introduction to statistical learning with applications in R. New York: Springer-Verlag; 2013. 440 p. doi: 10.1007/978-1-4614-7138-7
Mevik B., Wehrens R. The pls package: principal component and partial least squares regression in R. Journal of Statistical Software. 2007;18:2:1-23. doi: 10.18637/jss.v018.i02
Breiman L. Random Forests. Machine Learning. 2001;45:5-32. doi: 10.1023/A:1010933404324
McBratney A., Odeh I., Bishop T., Dunbar M., Shatar T. An overview of pedometric techniques of use in soil survey. Geoderma. 2000;97:293-327. doi: 10.1016/S0016-7061(00)00043-4
Hengl T., Heuvelink G., Stein A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma. 2004;120:75-93. doi: 10.1016/j. geoderma.2003.08.018
Odeh I., McBratney A., Chittleborough D. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma. 1994;63:197-214. doi: 10.1016/0016-7061(94)90063-9
Odeh I., McBratney A., Chittleborough D. Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma. 1995;67:215-226. doi: 10.1016/0016-7061(95)00007-B
Robinson T.P., Metternicht G. Comparing the performance of techniques to improve the quality ofyield maps. Agricultural Systems. 2005;85:19-41. doi: 10.1016/j.agsy.2004.07.010
Hengl T. A Practical Guide to Geostatistical Mapping. Amsterdam: University of Amsterdam Publ.; 2009. 293 p.
Webster R, Oliver M. Geostatistics for Environmental Scientists. Chichester: John Wiley & Sons, Ltd; 2001. 271 p.
Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Boehner J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015;8:1991-2007. doi: 10.5194/gmd-8-1991-2015
Miller B.A., Koszinski S., Wehrhan M., Sommer M. Impact of multi-scale predictor selection for modeling soil properties. Geoderma. 2015:239-240:97-106. doi: 10.1016/j. geoderma.2014.09.018
Li J, Heap A. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance an impact factor. Ecological Informatics. 2011;6(3-4):228-241. doi: 10.1016/j.ecoinf.2010.12.003
Shein E.V. Kurs fiziki pochv [Soil physics]. Moscow: Moscow State University Publ.; 2005. 432 p. In Russian
Yagodin B.A., Deryugin I.P., Zhukov Yu.P., Demin V.A, Peterburgskiy A.V., Kidin V.V., Slipchik A.F., Kulyukin A.I., Sablina S.M. Praktikum po agrokhimii [Manual on agrochemistry]. Moscow: Agropromizdat Publ.; 1987. 512 p. In Russian
Gouri S.B., Pravat K., Ramkrishna M. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal ofthe Saudi Society of Agricultural Sciences. 2016. In press. doi: 10.1016/j.jssas.2016.02.001
Zhang S, Huang Y, Shen C, Ye H, Du Y. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma. 2012;171-172:35-43. doi: 10.1016/j.geoderma.2011.07.012
Behera S.K., Shukla A.K. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. LandDegrad. Develop. 2015;26:71-79. doi: 10.1002/ldr.2306
Goovaerts P. Geostatistics for Natural Resources Evaluation (Applied Geostatistics). New York: Oxford University Press; 1997. 497 p.
Zare-Mehrjardi M, Taghizadeh-Mehjardi R, Akbarzadeh A. Evaluation of geostatistical techniques for mapping spatial distribution of soil pH, salinity and plant cover affected by environmental factors in Southern Iran. NotSciBiol. 2010;2:92-103.
Rodriques-Lado L, Martinez-Cortizas A. Modelling and mapping organic carbon content of topsoil in an Atlantic area of southwestern Europe (Galicia, NW-Spain). Geoderma. 2015;245-246:65-73. doi: 10.1016/j.geoderma.2015.01.015
McBrantey A.B., Mendoca Santos M.L., Minasny B. On digital soil mapping. Geoderma. 2003;117:3-52. doi: 10.1016/s0016-7061(03)00223-4
Minasny B., McBratney A.B. Methodologies for global soil mapping. In: Digital Soil Mapping. Bridging Research, Environmental Application and Operation. Boettinger J.L., Howel D.W., Moore A.C., Hartemink A.E., Kienast-Brown S., editors. Dordrecht: Springer Netherlands; 2010. pp. 429-436. doi: 10.1007/978-90-481-8863-5
Wei J.B., Xiao D.N., Zeng H., Fu Y.K. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northern China. Environ Geol. 2008;53:1663-1672. doi: 10.1007/s00254-007-0773-z
 Comparison of terrain-based drift models to improve the quality of soil predictive mapping at a field scale | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2016. № 4 (36). DOI: 10.17223/19988591/36/2

Comparison of terrain-based drift models to improve the quality of soil predictive mapping at a field scale | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2016. № 4 (36). DOI: 10.17223/19988591/36/2

Download full-text version
Counter downloads: 1718