Cytogenetic peculiarities of Larix sibirica Ledeb. embryogenic cell lines in in vitro culture
Somatic embryogenesis is a vegetative method of mass propagation of plants, which makes it possible to significantly accelerate genetic breeding studies and increase the scale of the resulting planting stock of important forestry species with breeding-significant features. This is especially relevant for slow growing coniferous plants. The cytogenetic variability of embryogenic cultures of coniferous species has been poorly studied; there are conflicting data in the reports on both the stability of chromosome numbers in in vitro culture and various genomic mutations. In this paper, we present the results of cytogenetic studies of embryogenic cell lines of Siberian larch (Larix sibirica Ledeb.) of different cultivation duration from the collection bank of embryogenic cultures of the Laboratory of Forest Genetics and Tree Breeding, VN Sukachev Institute of Forest, SB RAS (Krasnoyarsk, Russian Federation). We carried out this study to assess the level of cytogenetic stability of cell lines and to detect somaclonal variability and the selection of cell lines suitable for production of cloned plants. We used three embryogenic cellular lines of Siberian larch (CL 5, CL 6 and C 16.28), obtained from zygotic embryos of the experimental tree A4 as a result of controlled and self-pollination, as material for research. The age of the embryogenic cultures is from 1 to 8 years. In vitro zygotic embryos induction and proliferation of embryogenic cultures in Siberian larch was carried out according to the methods described earlier [Pak ME et al. 2016, Tretyakova IN et al. 2012]. Cytogenetic analysis of globular somatic embryos was carried out at the stage of proliferation using the existing methods of karyological and cytogenetic research of plants [Pravdin LF et al. 1972, Puhalskiy VA et al. 2007] with their own modifications. The material was treated with a 0.2% solution of colchicine for 18-20 hours at room temperature to reduce chromosomes and destroy the spindle apparatus, fixed with an ethanol-acetic acid solution (3:1), stained with 1% acetogematoxylin, and squash preparations were used to count the number of chromosomes. The number of chromosomes was determined in not less than 100 metaphase plates for each cell line. As a result of cytogenetic investigation of Siberian larch embryogenic cell lines in in vitro culture for the first time, somaclonal variability in the number of chromosomes was revealed for this species. Among the long-proliferating cell lines, there are both cytogenetically stable cell lines (CL 6 and CL 16.28) containing a normal diploid number of chromosomes (2n = 24) and unstable (CL 5) in the karyotype, with chromosome numbers ranging from 24 to 30, a large number of pathologies of mitosis and cells with micronuclei. Some cell lines of Siberian larch are likely to retain cytogenetic stability for many years, which allows them to be used successfully to produce cloned plants. Obviously, for successful reproduction of coniferous plants with the help of somatic embryogenesis, it is necessary to carry out cytogenetic control of embryogenic cultures that will significantly improve the quality of the obtained regenerants and increase the amount of planting stock of coniferous plants with breeding-significant features that is suitable for plantation forest growing in Siberia. The article contains 2 Figures, 1 Table, 30 References.
Keywords
Larix sibirica,
эмбрионально-суспензорная масса,
соматический эмбриогенез,
число хромосом,
геномные мутации,
Larix sibirica,
embryonal-suspensor masses,
somatic embryogenesis,
number of chromosomes,
genomic mutations,
митоз,
микроядра,
mitosis,
micronucleiAuthors
Goryachkina Olga V. | Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences | kvitko_olga@mail.ru |
Park Maria E. | Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences | mtavi@bk.ru |
Tretyakova Iraida N. | Krasnoyarsk Scientific Center, Siberian Branch of the Russian Academy of Sciences | mtavi@bk.ru |
Всего: 3
References
Grawe J., Abramsson-Zetterberg L., Eriksson L., Zetterberg G. The relationship between DNA content and centromere content in micronucleated mouse bone marrow erythrocytes analyzed by flow cytometry and fluorescent in situ hybridization // Mutagenesis. 1994. Vol. 9 (1). PP. 31-38. doi: 10.1093/mutage/9.1.31
Ильинских Н.Н., Ильинских И.Н., Бочаров Е.Ф. Патогенетический гомеостаз и иммунитет. Новосибирск : Наука, 1986. 256 с.
Vanparys P., Vermeiren F., Sysmans M., Temmerman R. The micronucleus assay as a test for the detection of aneugenic activity // Mutat. Res. 1990. Vol. 244 (2). PP. 95-103. doi: 10.1016/0165-7992(90)90056-P
Hogstedt B., Karlsson А. The size of micronuclei in human lymphocytes varies according to inducing agent used // Mutat. Res. Genetic Toxicology. 1985. Vol. 156, is. 3. PP. 229-232. doi: 10.1016/0165-1218(85)90067-9
Жулева Л.Ю., Дубинин Н.П. Использование микроядерного теста для оценки экологической обстановки в районах Астраханской области // Генетика. 1994. Т. 30, № 7. С. 999-1004.
Горячкина О.В., Сизых О.А. Цитогенетические реакции хвойных растений в антропогенно нарушенных районах г. Красноярска и его окрестностей // Хвойные бореальной зоны, 2012. Т. XXX, № 1-2. С. 46-51. http://forest.akadem.ru/Articles/12/ HBZ-XXX-1-2-046-051.pdf
Третьякова И.Н., Пак М.Э., Иваницкая А.С., Орешкова Н.В. Особенности соматического эмбриогенеза длительно пролиферирующих эмбриогенных клеточных линий Larix sibirica in vitro // Физиология растений. 2016. Т. 63, № 6. С. 812-822. doi: 10.7868/S0015330316050134
Muratova E.N., Sedelnikova T.S., Pimenov A.V., Karpjuk T.V., Sizikh O.A., Kvitko (Goryachkina) O.V. Karyological analysis of larch species from Siberia and the Far East of Russia // Forest Science and Technology. 2007. Vol. 3. PL. 89-94. doi: 10.1080/21580103.2007.9656323
Муратова Е.Н., Седельникова Т.С., Пименов А.В., Карпюк Т.В., Квитко О.В., Сизых О.А. Кариологический полиморфизм лиственниц // Биоразнообразие лиственниц Азиатской России / под ред. С.П. Ефремова, Л.И. Милютина. Новосибирск : ГЕО, 2010. С. 34-49.
Муратова Е.Н., Карпюк Т.В., Владимирова О.С., Сизых О.А., Квитко О.В. Цитологическое изучение лиственницы сибирской в антропогенно нарушенных районах г. Красноярска и его окрестностей // Вестник экологии, лесоведения и ландшафтоведения. 2008. № 9. С. 99-108.
Муратова Е.Н. Кариологическое исследование Larix sibirica (Pinaceae) в различных частях ареала // Ботанический журнал. 1991. Т. 76, № 11. С. 1586-1595.
Hizume M. Karyomorphological studies in the family Pinaceae // Mem Fac Educ Ehime University. Ser III. Natural Sci. 1988. Vol. 8 (2). PP. 1-108.
Lelu-Walter M.-A., Paques L.E. Simplified and improved somatic embryogenesis of hybrid larches (Larix x eurolepis and Larix x marschlinsii). Perspectives for breeding // Ann. For. Sci. 2009. Vol. 66, № 104. PP. 1-10. doi: 10.1007/s00299-006-0115-8
Третьякова И.Н., Пак М.Э. Особенности мультипликации соматических зародышей Larix sibirica в эмбриогенной культуре in vitro // Онтогенез. 2017 (в печати).
Von Aderkas P., Pattanavibool R., Hristoforoglu K., Ma Y. Embryogenesis and genetic stability in long term megagametophyte-derived cultures of larch // Plant Cell Tiss. Org. Cult. 2003. Vol. 74. PP. 27-34. doi: 10.1023/A:1024614209524
Stasolla C., Yeung E.C. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality // Plant Cell, Tissue and Organ Culture. 2003. Vol. 74, № 1. PP. 1535. doi: 10.1023/A:1023345803336
Пухальский В.А., Соловьев, А.А. Бадаева, Е.Д., Юрцев В.Н. Практикум по цитологии и цитогенетике растений. 2007. 200 c.
Правдин Л.Ф., Бударагин В.А., Круклис М.В., Шершукова О.П. Методика кариологического изучения хвойных пород // Лесоведение. 1972. Т. 2. С. 67-75.
Третьякова И.Н., Барсукова А.С. Соматический эмбриогенез в культуре in vitro трех видов лиственницы // Онтогенез. 2012. Т. 43, № 6. С. 425-435.
Пак М.Э., Иваницкая А.С., Двойнина Л.М., Третьякова И.Н. Эмбриогенный потенциал длительно пролиферирующих клеточных линий Larix sibirica in vitro // Сибирский лесной журнал. 2016. № 1. С. 27-38. doi: 10.15372/SJFS20160103
Helmersson A., von Arnold S., Burg K., Bozhkov P.V. High stability of nuclear microsatellite loci during the early stages of somatic embryogenesis in Norway spruce // Tree Physiol. 2004. Vol. 24. PP. 1181-1186.
Harvengt L., Trontin J.F., Reymond I., Canlet F., Paques M. Molecular evidence of true-totype propagation of a 3-yearold Norway spruce through somatic embryogenesis // Planta. 2001. Vol. 213. PP. 828-832. doi: 10.1007/s004250100628
Mo L.M., von Arnold S., Lagererantz U. Morphogenic and genetic stability in long-term embryogenic cultures and somatic embryos of Norway spruce (Picea abies [L.] Karst.) // Plant Cell Rep. 1989. Vol. 8. PP. 375-378.
Tremblay L., Levasseur C., Tremblay F.M. Frequency of somaclonal variation in plants of black spruce (Picea mariana, Pinaceae) and white spruce (P. glauca, Pinaceae) derived from somatic embryogenesis and identification of some factors involved in genetic instability // American Journal of Botany. 1999. Vol. 86 (10). PP. 1373-1381.
Fourre J.L., Berger P., Niquet L., Andre P. Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches // Theor. Appl. Genet. 1997. Vol. 94. PP. 159-169. doi: 10.1007/s001220050395
O'Brien E.W., Smith D.R., Gardner R.C., Murray B.G. Flow cytometric determination of genome size in Pinus // Plant Sci. 1996. Vol. 115. PP. 91-99. doi: 10.1016/0168-9452(96)04356-7
Nkongolo K.K., Klimaszewska K. Cytological and molecular relationships between Larix decidua, L. leptolepis and Larix x eurolepis: identification of species-specific chromosomes and synchronization of mitotic cell // Theor. Appl. Genet. 1995. Vol. 90. PP. 827-834. doi: 10.1007/BF00222018
Salajova T., Salaj J. Somatic embryogenesis in European black pine (Pinus nigra Arn.) // Biol. Plant. 1992. Vol. 4. PP. 213-218. doi: 10.1007/BF02925871
Roth R., Ebert I., Schmidt J. Trisomy associated with loss of maturation capacity in a longterm embryogenic culture of Abies alba // Theoretical and applied genetics. 1997. Vol. 95, №. 3. PP. 353-358. doi: 10.1007/s001220050570
Sarmast M.K. Genetic transformation and somaclonal variation in conifers // Plant Biotechnology Reports. 2016. Vol. 10, is. 6. PP. 1-17. doi: 10.1007/s11816-016-0416-5