Spatial distribution features of bottom communities of a plain river in the Middle Volga river basin
Spatial distribution of hydrobiont communities depends on heterogeneous environmental conditions and is accompanied by formation of their specific determined patterns. For lotic ecosystems, various theories are devoted to their generalization: river continuum, flow neutrality, patch dynamics, ecological niches, landscape filters, etc. The aim of this work was to consider structural variability patterns of bottom communities at different sites of the water flow using the example of the Usa river - a typical plain river in the Middle Volga river basin discharging into the Kuybyshev water reservoir at the northwest extremity of the Zhiguli mountains (See Fig. 1). We used statistical methods to assess whether the listed theoretical constructions are applicable to explain the variation of the observed data. We carried out hydrobiological sampling during several years at 9 sites of the river, determined species composition, and estimated the number and biomass of 89 species (taxa) of macrozoobenthos. With the use of the Dickey-Fuller test, the hypothesis of the non-stationary character of the majority of population density series of the main taxonomic groups and generalized hydrobiological parameters and the existence of regular trends concerning the sequence of sites is confirmed (See Table 1). With the use of the Pielou's method of random skewers, statistical significance of the determined tendency in changing the structure of the entire community as a whole along the longitudinal gradient of the river is shown. We made a comparative analysis of rates of species richness change and estimated the beta-diversity for seasonal, long-term and spatial variants of combining observations (See Fig. 3). Using nonmetric multidimensional scaling, we constructed ordination diagrams of species and separated site groups corresponding to the characteristic zones of the watercourse (See Fig. 4). From the set of hydrological, hydrochemical and geomorphological environmental factors, we selected the most significant parameters defining the complex gradient of the river (oxygen saturation, flow velocity, and the phosphorus content (See Table 2). We showed that macrozoobenthos spatial distribution in the Usa River ecosystem is explained by the mechanisms of complex combination of all three concepts: "neutral pipe", "river continuum" and "patch mosaic". In the upper course, there is a high turnover of species and a considerable difference in taxonomic structure of bottom communities among sites, which is characteristic of neutral pipe. In the middle reaches, the balance of primary production is stabilised and there is an active exchange of species owing to direct and reverse drift. The taxonomic structure of biocenoses sequence in its peripheral part is strongly blocked and, consequently, a share of common species is great, which corresponds to the theory of the river continuum. In the lower reaches and estuary, the impact of external environmental factors becomes critical, and migration of species with waters from the Kuybyshev water reservoir is great, therefore a specific benthos structure is characteristic of "isolated zones". The article contains 4 Figures, 2 Tables and 30 References.
Keywords
сообщества макрозообентоса,
видовое богатство,
речной континуум,
статистические гипотезы,
многомерная ординацияAuthors
Zinchenko Tatiana D. | Institute of Ecology of the Volga River Basin, Russian Academy of Sciences | tdz@mail333.com |
Shitikov Vladimir K. | Institute of Ecology of the Volga River Basin, Russian Academy of Sciences | stok1946@gmail.com |
Golovatyuk Larisa V. | Institute of Ecology of the Volga River Basin, Russian Academy of Sciences | gollarisa@mail.ru |
Всего: 3
References
Townsend C.R. The patch dynamics concept of stream community ecology // J. North Amer. Benthological Soc. 1989. Vol. 8. PP. 36-50.
Hubbell S.P. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton: Univ. Press, 2001. 448 p.
Gladyshev M.I., Kolmakova O.V., Tolomeev A.P., Anishchenko O.V., Makhutova O.N., Kolmakova A.A. Differences in organic matter and bacterioplankton between sections of the largest Arctic river: Mosaic or continuum? // Limnol. Oceanogr. 2015. Vol. 60. PP. 1314-1331.
Wood S.N. Generalized Additive Models: аn Introduction with R. Boca Raton, FL : Chapman & Hall/CRC, 2006. 410 p.
Oksanen J., Blanchet F.G., Kindt R. et al. vegan: Community Ecology Package. R package version 2.0-2. 2011. URL: https://cran.r-project.org/web/packages/vegan Accessed: 24.07.2017).
McCune B., Grace J.B., Urban D.L. Analysis of Ecological Communities. Gleneden Beach, OR : MjM Software, 2002. 285 p.
Шарый П.А., Пинский Д.Л. Статистическая оценка связи пространственной изменчивости содержания органического углерода в серой лесной почве с плотностью, концентрацией металлов и рельефом // Почвоведение. 2013. № 11. С. 1344-1356.
Legendre P., Legendre L. Numerical Ecology. Amsterdam : Elsevier Sci. BV, 2012. 1006 p.
Pielou E.C. Probing multivariate data with random skewers: a preliminary to direct gradient analysts // Oikos. 1984. Vol. 42. PP. 161-165.
Jongman R.H.G., ter Braak C.J.F., van Tongeren O.F.R. Data Analysis in Community and Landscape Ecology. Wageningen : Pudoc, 1987. 299 p. [Пер. с англ.: Джонгман Р.Г.Г., тер Браак С.Дж.Ф., ван Тонгерен О.Ф.Р. Анализ данных в экологии сообществ и ландшафтов. М. : РАСХН, 1999. 306 с.].
Wilson M.V., Shmida A. Measuring beta diversity with presence-absence data // J. Ecol. 1984. Vol. 72. PP. 1055-1064.
Dickey D.A., Fuller W.A. Distribution of the estimators for autoregressive time series with a unit root // J. American Statistical Association. 1979. Vol. 74. PP. 427-431.
Дыренков С.А., Акатов В.В. Экологическое пространство второго порядка: скорости изменений функций отклика на градиенте экологических факторов // Экология. 1990. Т. 21, № 3. С. 13-21.
Методические рекомендации по сбору и обработке материалов при гидробиологических исследованиях на пресноводных водоемах. Зообентос и его продукция / под ред. Г.Г. Винберга и Г.М. Лаврентьевой. Л. : ГосНИОРХ, ЗИН АН СССР, 1983. 51 с.
Зинченко Т.Д. Эколого-фгунистическая характеристика хирономид (Diptera, Chironomidae) малых рек бассейна Средней и Нижней Волги: (атлас). Тольятти : Кассандра, 2011. 258 с.
Ruse L.P., Herrmann S.J., Sublette J.E. Chironomidae (Diptera) species distribution related to environmental characteristics of the metal-polluted Arkasas River, Colorado // Western North American Naturalist. 2000. Vol. 60, № 1. PP. 34-56.
Голубая книга Самарской области: редкие и охраняемые гидробиоценозы / под ред. Г.С. Розенберга и С.В. Саксонова. Самара : Самарский научный центр РАН, 2007. 200 с.
Hirzel A.H., Le Lay G. Habitat suitability modelling and niche theory // J. Appl. Ecol. 2008. № 45. PP. 1372-1381.
Шитиков В.К., Зинченко Т.Д., Розенберг Г.С. Макроэкология речных сообществ: концепции, методы, модели. Тольятти : Кассандра, 2012. 257 с.
Dalu T., Froneman W., Richoux N. Phytoplankton community diversity along a river-estuary continuum // Transactions of the Royal Society of South Africa. 2014. № 6. PP. 1-10.
Webster J.R. Spiraling down the river continuum: stream ecology and the U-shaped curve // J. North Am. Benthol. Soc. 2007. № 26. PP. 375-389.
Poff N.L. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology // J. North Am. Benthol. Soc. 1997. № 16. PP. 391-409.
Chase J.M., Leibold M.A. Ecological Niches: Linking Classical and Contemporary Approaches. Chicago : The University of Chicago Press, 2003. 221 р.
Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R, Cushing C.E. The river continuum concept // Canadian Journal of Fisheries and Aquatic Sciences. 1980. Vol. 37. PP. 130-137.
Богатов В.В. Комбинированная концепция функционирования речных экосистем // Вестник ДВО РАН. 1995. № 3. С. 51-61.
Montgomery D.R. Process domains and the river continuum concept // J. American Water Resources Association. 1999. Vol. 35. PP. 397-410.
Шитиков В.К., Зинченко Т.Д. Статистический анализ структурной изменчивости донных сообществ и проверка гипотезы речного континуума // Водные ресурсы. 2014. Т. 41, № 5. С. 530-540.
Perry J.A., Schaeffer D.J. The longitudinal distributions of or riverine benthos: a river discontinuum? // Hydrobiologia. 1987. № 148. PP. 257-268.
Алимов А.Ф., Богатов В.В., Голубков С.М. Продукционная гидробиология. СПб. : Наука, 2013. 342 с.
Guisan A., Thuiller W. Predicting species distribution: offering more than simple habitat models // Ecology Letters. 2005. Vol. 8. PP. 993-1009.