Estimation of absorption capacity of coals metamorphosed to a different extent using the example of potassium fixation
The composition and properties of different coal types, in particular mined in Siberia, are thoroughly studied, but the ecological impact of coals on soil formation process and restoration of technogenic landscapes still lacks sufficient attention. At the same time, one of the main properties of coal, determining its ecological functions, is absorption capacity. The aim of the research was to estimate potassium fixation capacity of coals metamorphosed to a different extent in comparison with loess loam and automorphous soils. We selected three types of coal from West Siberia major fields: anthracite from Gorlovsky field of the Gorlovsky coal basin (54˚34'N, 83˚35'E), coal from Listvyansky field of the Kuznetsky coal basin (53˚39'N, 86˚53'E) and brown coal from Nazarovo field of the Kansko-Achinsky basin (55˚58'N, 90˚23'E). For a comparative assessment of potassium fixation capacity of coals, we took the following samples: loess carbonated loam (hereinafter, loam) as the prevailing soil-forming rock and humus horizon of Luvic Chernozems (hereinafter, agrochernozem) as automorphous soil on the territory of the studied coal basins. Below in the text, as well as in the tables and figure, the samples of three coal types (anthracite, coal and brown coal), loam and agrochernozem are designated as “substrates”. We examined potassium fixation in the laboratory with substrate composting during 150 days in the presence of potassium fertilizers alternating humidification and desiccation. We added 100 g of air-dry substrates sifted through a sieve with 1 mm hole diameter to water solution of potassium fertilizers (KCl) at a dose of 25 and 50 mg of K/100 g (variants K25 and K50, respectively). The experiment also included a variant without fertilization (K0). After fertilization, the substrates were thoroughly mixed and 1, 5, 15, 30 and 150 days later samples were picked for chemical analysis. The experiment was conducted in 2 replicates, thus, the sample size for each substrate was n = 30. Potassium forms were extracted by the following ways: watersoluble potassium (Ws-K) in the ratio of substrate: water 1:5, exchangeable potassium (Ex-K) by 1М CH3COONH4, and non-exchangeable potassium (Nex-K) by 1М НNO3 with boiling. The exchangeable potassium content before the experiment (See Table 1) and during the period after fertilization (See Tables 2 and 3) was calculated with the water-soluble form of the element. At the end of the experiment (150 days), we determined the content of three forms of potassium (Ws-K, ExK and NexK) in the substrates using the difference method (See Table 4 and Fig. 1). Potassium, not extracted by 1М CH3COONH4, was considered fixed. Potassium fixation was calculated in relation to the variant without fertilization (К0) both in absolute values (mg/kg) and as a percentage of the applied dose of fertilizers (fixation percentage). Potassium fixation capacity of anthracite and coal averaged 36% and 30%, respectively in the experiment, which brings them closer to agrochernozem (38%); brown coal was characterized by low potassium fixation (10%), and for loess loam it was high (80%) (See Table 2). Regardless of fertilizer dosage, the applied potassium was never fully fixed by substrates. When potassium fertilizer dosage increased, the absolute value of fixed potassium in substrates significantly rose, but the percentage of the element fixation was at about the same level or even decreased. During potassium fixation by substrates (except brown coal), potassium cations transited not only into non-exchangeable form (extracted by 1М HNO3), but also into a more tightly bound state. Potassium was accumulated in substrates in the following forms: loess loam - non-exchangeable, agrochernozem - exchangeable, coal and brown coal - exchangeable and water-soluble, anthracite - water-soluble (See Table 4 and Fig. 1). After long-term substrate composting, potassium applied with fertilizers was extracted in water-soluble, exchangeable and non-exchangeable forms differently: 100% from brown coal, up to 90% from coal and loam, and around 50% and 40% from agrochernozem and anthracite, respectively. Thus, coals metamorphosed to a different extent are able to deposit biogenic elements and affect the nutrient regime and properties of young soils of coal-mine dumps, and, thereby, are able to determine the rate of restoration of technogenic landscapes. We can assume that more metamorphosed coals (anthracite, coal) will have a greater effect on the functioning of young soils of technogenic landscapes. The fact that coal and anthracite get to dumps with coarse-fragmented rocks having low adsorption capacity enhances this effect. Brown coal comes mainly with loess loam, which minimizes its participation in exchange processes in young soils of technogenic landscapes. Using the results of this experiment will allow a more detailed estimation of the soil-ecological condition and prospects for restoring technogenic landscapes, and, thus, correcting the purposes and reasonably designating the directions of restoration activities. The paper contains 1 Figure, 4 Tables and 39 References.
Keywords
антрацит,
каменный и бурый угли,
калийфиксирующая способность,
формы калия,
Западная Сибирь,
coal,
anthracite,
brown coal,
potassium fixation capacity,
potassium forms,
West SiberiaAuthors
Nechaeva Taisia V. | Institute of Soil Science and Agrochemistry, Siberian Branch of the Russian Academy of Sciences | nechaeva@issa-siberia.ru |
Sokolov Denis A. | Institute of Soil Science and Agrochemistry, Siberian Branch of the Russian Academy of Sciences | sokolovdenis@issa-siberia.ru |
Sokolova Natalia A. | Institute of Soil Science and Agrochemistry, Siberian Branch of the Russian Academy of Sciences | nsokolova@issa-siberia.ru |
Всего: 3
References
Нефтяная отрасль: итоги 2017 года и краткосрочные перспективы / Выпуск подготовлен авторским коллективом под руководством Л. Григорьева // Энергетический бюллетень. 2018. № 56. 28 с.
Голицын М.В., Вялов В.И., Богомолов А.Х., Пронина Н.В., Макарова Е.Ю., Митронов Д.В., Кузеванова Е.В., Макаров Д.В. Перспективы развития технологического использования углей в России // Георесурсы. 2015. Т. 61, № 2. С. 41-53.
Khaibullin M.M., Kirillova G.B., Yusupova G.M., Kagirov E.S., Ismagilov R.Z., Rachimov R.R., Sergeev V.S., Khaziev F.H., Gaifullin R.R., Bagautdinov F.Y. Influence of percentage fertilizer systems on change of agrochemical properties of the arable layer of leach Chernozem and on the crops productivity of crop rotation // Journal of Engineering and Applied Science. 2018. Vol. 13. PP. 6527-6532. doi: 10.3923/jeasci.2018.6527.6532
Androkhanov V.A., Sokolov D.A. Fractional composition of redox systems in the soils of coal mine dump // Eurasian Soil Science. 2012. Vol. 45, № 4. РР. 399-403. doi: 10.1134/ S1064229312020032
Zharikova E.A., Kostenkov N.M. Physicochemical properties and potassium state of the soils developed on dump rocks of coal mines // Eurasian Soil Science. 2014. Vol. 47, № 1. PP. 26-34. doi: 10.7868/S0032180X14010146
Середина В.П., Алексеева Т.П., Сысоева Л.Н., Трунова Н.М., Бурмистрова Т.И. Исследование процессов формирования органического вещества в нарушенных при угледобыче почвах // Вестник Томского государственного университета. Биология. 2012. № 1 (17). С. 18-31.
Verma M.K., Pandey P., Mukhopadhyay R., Dwaivedi R., Karmakar N.C., Bajaj V.K. Chemical characterization of selected overburdens of Singrauli coalfields // Ecology, Environment and Conservation. 2016. Vol. 22. PP. S207-S211.
Угольная база России. Т. III: Угольные бассейны и месторождения Восточной Сибири (южная часть) / гл. ред. В.Ф. Череповский. М. : ООО «Геоинформцентр», 2002. 488 с.
Угольная база России. Т. II: Угольные бассейны и месторождения Западной Сибири (Кузнецкий, Горловский, Западно-Сибирский бассейны; месторождения Алтайского края и Республики Алтай) / гл. ред. В.Ф. Череповский. М. : ООО «Геоинформцентр», 2003. 604 с.
Ussiri D.A.N., Jacinthe P.A., Lal R. Methods for determination of coal carbon in reclaimed minesoils // Geoderma. 2014. № 214-215. РР. 155-167. doi: 10.1016/j. geoderma.2013.09.015
Maharaj S., Barton C.D., Karatkanasis T.A.D., Rowe H.D., Rimmer S.M. Distinguishing "new" from "old" organic carbon on reclaimed coal mine sites using thermogravimetry: I. Method development // Soil Science. 2007. № 172. РР. 292-301. doi: 10.1097/ SS.0b013e31803146e8
Rumpel C., Knicker H., Kogel-Knabner I., Skjemstad J.O., Huttl R.F. Types and chemical composition of organic matter in reforested lignite-rich mine soils // Geoderma. 1998. № 86. РР. 123-142. doi: 10.1016/S0016-7061(98)00036-6
Schmidt M.W.I., Skjemstad J.O., Czimczik C.I., Glaser B., Prentice K.M., Gelinas Y., Kuhlbusch T.A.J. Comparative analysis of black carbon in soils // Global Biogeochemical Cycles. 2001. № 15. РР. 163-167. doi: 10.1029/2000GB001284
Соколов Д.А., Кулижский С.П., Лим А.Г., Гуркова Е.А., Нечаева Т.В., Мерзляков О.Э. Сравнительная оценка методов определения педогенного органического углерода в углесодержащих почвах // Вестник Томского государственного университета. Биология. 2017. № 39. С. 29-43. doi: 10.17223/19988591/39/2
Brodowski S., Amelung W., Haumaier L., Abetz C., Zech W. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy // Geoderma. 2005. № 128. РР. 116129. doi: 10.1016/j.geoderma.2004.12.019
Skjemstad J.O., Janik L.J., Head M.J., McClure S.G. High-energy ultraviolet photooxidation: a novel technique for studying physically protected organic-matter in clay-sized and silt-sized aggregates // Journal of Soil Science. 1993. № 44. РР. 485-499. doi: 10.1111/j.1365-2389.1993.tb00471.x
Bota K.B., Abotsi G.M.K., Sims L.L. Electrokinetic and Adsorptive Properties of a Lignite in Aqueous Solutions of Catalytic Salts // Energy and Fuels. 1994. Is. 4, vol. 8. PP. 937-942. doi: 10.1021/ef00046a018
Cornelissen G., Gustafsson O. Importance of unburned coal carbon, black carbon, and amorphous organic carbon to phenanthrene sorption in sediments // Environmental Science and Technology. 2005. Is. 3, vol. 39. PP. 764-769. doi: 10.1021/es049320z
Wang R., Ma Q., Ye X., Li C., Zhao Z. Preparing coal slurry from coking wastewater to achieve resource utilization: Slurrying mechanism of coking wastewater-coal slurry // Science of the Total Environment. 2019. Vol. 650. PP. 1678-1687. doi: 10.1016/j.scitotenv.2018.09.329
Sokolov D.A., Androkhanov V.A., Kulizhskii S.P., Loiko S.V., Domozhakova E.A. Morphogenetic diagnostics of soil formation on tailing dumps of coal quarries in Siberia // Eurasian Soil Science. 2015. Vol. 48, № 1. PP. 95-105. doi: 10.1134/S1064229315010159
Otremba K. Effect of addition of brown coal on the structure of soils developing from post-mining grounds of Konin brown coal mine // Rocznik Ochrona Srodowiska. 2012. Is. 14. PP. 695-707.
Godfried M.K., Kofi A., Bota B., Saha G. Effects of coal surface charge on the adsorption and gasification activities of calcium and potassium // Fuel Science and Technology International. 1993. Is. 2, vol. 11. PP. 327-348. doi: 10.1080/08843759308916071
Yoon T.H., Benzerara K., Ahn S., Luthy R.G., Tyliszczak T., Brown Jr. G.E. Nanometer-scale chemical heterogeneities of black carbon materials and their impacts on PCB sorption properties: Soft X-ray spectromicroscopy study // Environmental Science and Technology. 2006. Is. 19, vol. 40. PP. 5923-5929. doi: 10.1021/es060173+
Прокошев В.В., Дерюгин И.П. Калий и калийные удобрения. М. : Ледум, 2000. 185 с.
Якименко В.Н. Калий в агроценозах Западной Сибири. Новосибирск : Изд-во СО РАН, 2003. 231 с.
Середина В.П. Калий и почвообразование. Томск : Изд-во ТГУ, 2012. 354 с.
Yakimenko O.S., Terekhova V.A. Humic preparations and the assessment of their biological activity for certification purposes // Eurasian Soil Science. 2011. Vol. 44, № 11. РР. 12221230. doi: 10.1134/S1064229311090183
Якименко В.Н. Фиксация и десорбция калия некоторыми автоморфными почвами // Агрохимия. 1995. № 2. С. 12-18.
Пивоварова Е.Г. Влияние калийных удобрений на содержание форм калия в почве и урожайность сельскохозяйственных культур // Агрохимия. 1993. № 2. С. 44-49.
Полевой определитель почв России / под ред. Н.Б. Хитрова. М. : Почвенный институт имени В.В. Докучаева, 2008. 182 с.
IUSS Working Group WRB World Reference Base for Soil Resources International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome : FAO, 2014. 181 р.
Агрохимические методы исследования почв / под ред. А.В. Соколова. 5-е изд., доп. и перераб. М. : Наука, 1975. 656 с.
Pansu M., Gautheyrou J. Handbook of soil analysis: Mineralogical, organic and inorganic methods. Вerlin : Springer, 2006. 993 p.
Теория и практика химического анализа почв / род ред. Л.А. Воробьевой. М. : ГЕОС, 2006. 400 с.
Сорокин О.Д. Прикладная статистика на компьютере. 2-е изд. Новосибирск : ГУП РПО СО РАСХН, 2012. 282 с.
Якименко В.Н., Нечаева Т.В. Действие и последействие калийных удобрений в Западной Сибири // Вестник Международного института питания растений. 2016. № 2. С. 9-13. doi: http://eeca-ru.ipni.net/article/EECARU-2340
Нечаева Т.В., Соколов Д.А. Оценка К-фиксирующей способности различных видов углей // Материалы международной научной конференции «Природно-техногенные комплексы: современное состояние и перспективы восстановления». Новосибирск : Изд-во СО РАН, 2016. С. 173-179.
Середина В.П. Геохимические особенности поведения калия в почвах // Вестник Томского государственного университета. Биология. 2007. № 1. С. 106-118.
Павлов К.В., Егоров В.С., Пулин А.В. Характеристика фиксации калия дерново-подзолистой почвой // Вестник Московского университета. Серия 17. Почвоведение. 2003. № 3. С. 49-51.