Biology of Thymus dmitrieva Gamajun. (Lamiaceae) in the protected area (Aksu-Dzhabagly Reserve) | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2019. № 47. DOI: 10.17223/19988591/47/6

Biology of Thymus dmitrieva Gamajun. (Lamiaceae) in the protected area (Aksu-Dzhabagly Reserve)

The aim of our work was to study the architecture and morphogenesis of Thymus dmitrievae Gamajun. (Lamiaceae Lindl.) growing in the Tien-Shan mountains to identify morphological mechanisms of its adaptation to growing conditions. The main habitat of the species is steppe communities in forest, subalpine and alpine zones of the mountains. According to AP Gamayunova and AA Dmitrieva (1964), T. dmitrievae in different habitats is characterized by the density of head inflorescence, leaf size, calyx teeth shape and its pubescence. Information about the biology of this species is absent in literature. We conducted our study on the territory of the Aksu-Zhabagly Reserve (Western part of the Talas Alatau): 1) the Kshi-Kaindy upriver (42°22'3I"N. 70°34'37"E, altitude of 2206 m above sea level), the upper limit of the juniper belt, forb-fescue high-mountain steppe, dark brown soil among the outcrops of stones; 2) middle reaches of the Kshi-Kaindy river, (42°24'25''N, 70°34'42''E, altitude of 1808 m above sea level), the belt of junipers, bushy forb-feather-grass mountain steppe, soils are leached and covered with cobbles. The life form of T. dmitrieva was specified using ecological-morphological classification of life forms by IG Serebryakov (1962). The biomorph type was established in accordance with OV Smirnova et al.'s (2002) phytocoenotic classification developed on the features of spatial distribution of shoots, buds and roots of plants. The morphogenesis phases of T. dmitrieva were selected according to the characteristics given by OV Smirnova and supplemented by NP Savinykh and VA Cheryomushkina (2015). In 25 individuals of each ontogenetic state, we calculated the number of vegetative and generative shoots in the bush structure, their length, the number of compound skeletal axes and partial bushes, and the bush diameter. The data for each feature are presented as an arithmetic mean with a standard error. When describing the shoot system of T. dmitrievae, we used the architectural approach (Caraglio and Edelin, 1990; Barthelemy and Caraglio, 2007; Millan et al., 2019), according to which an architectural unit consisting of the main (or maternal n-order) composite skeletal axis, the composite skeletal axis of the 1st (or n+1) order, single shoots of the 1st order formation, branching shoots and ephemeral shoots was distinguished. The analysis of shoot formation, the pattern of death of shoots and the method of their growth showed that T. dmitrievae was characterized by the life form of the dwarf shrub. Depending on the characteristics of the substrate, we revealed polyvariance of individuals. In the areas of substrate free from stony-gravelly outcrops, the morphogenesis of individuals is characterized by a variety of phases (in genets: primary shoot, primary bush, clump; in ramets: partial bush, the system of partial bushes), the clump phase being the longest of them (until 16 years) (See Fig. 1). The structure of individuals is formed by repeating three architectural units: orthotropicplagiotropic, plagiotropic and orthotropic (See Fig. 3). The presence of an individual of simultaneously three architectural units in the structure ensures the seizure of the territory and leads to the compaction of the bush. In this case, several centers of consolidation form in the structure of the bush (See Table). In individuals growing on a soil and stony substrate, morphogenesis consists of two phases that take place in genets: primary shoot and primary bush. The phase of the primary bush is the longest. It occurs in the immature state and continues until the death of the individual in the old generative state (until 22 years) (See Fig. 2). The structure of individuals is formed by multiple repeating of two architectural units: plagiotropic and orthotropic (See Fig. 3), which leads to intensive growth of the bush. The paper contains 3 Figures, 1 Table and 31 References.

Download file
Counter downloads: 297

Keywords

Thymus dmitrievae, архитектурная единица, морфогенез, морфологическая адаптация, кустарничек, Таласский Алатау, Thymus dmitrievae, architectural unit, morphogenesis, morphological adaptation, dwarf shrub, Talas Alatau

Authors

NameOrganizationE-mail
Cheryomushkina Vera A.Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciencescher.51@mail.ru
Talovskaya Evgeniya B.Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Scienceskolegova_e@mail.ru
Astashenkov Alexey Yu.Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciencesastal@bk.ru
Guseva Alexandra A.Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciencesguseva.sc@list.ru
Dzhumanov SamatAksu-Zhabagly State Nature Reservesamat.reserve@mail.ru
Всего: 5

References

Caraglio Y., Edelin C. Architecture et dynamique de la croissance du platane. Platanus hybrida Brot. (Platanaceae) (syn. Platanus acerifolia (Aiton) Willd.) // Bulletin de la Societe Botanique de France, Lettres botaniques. 1990. Vol. 137, № 4-5. PP. 279-291. https://doi.org/10.1080/01811797.1990.10824889
Charles-Dominique T., Edelin C., Bouchard A. Architectural strategies of Cornus sericea, a native but invasive shrub of Southern Quebec, Canada, under an open or a closed canopy // Annals of Botany. 2010. Vol. 105, № 2. PP. 205-220. https://doi.org/10.1093/aob/mcp273
Антонова И.С., Гниловская А.А. Побеговые системы Acer negundo L. (Acereceae) в разных возрастных состояниях // Ботанический журнал. 2013. Т. 98, № 1. С. 53-68.
Гетманец И.А. Морфоадаптивная обусловленность структурного разнообразия биоморф рода Salix L. Южного Урала // Сибирский экологический журнал. 2015. Т. 22, № 5. С. 698-709. doi: 10.15372/SEJ20150504
Костина М.В., Барабанщикова Н.С., Битюгова Г.В., Ясинская О.И., Дубах А.М. Структурные модификации кроны березы повислой (Betula pendula Roth.) в зависимости от экологических условий произрастания // Сибирский экологический журнал. 2015. Т. 22, № 5. С. 710-724. doi: 10.15372/SEJ20150505
Недосеко О.И., Викторов В.П. Архитектурные модели Salix traindra L. и Salix fragilis L. // Социально-экологические технологии. 2016. № 2. С. 39-50.
Gambino S., Ratto F., Bartoli A. Architecture of the genus Gutierrezia (Asteraceae: Astereae, Solidagininae) // Boletin de Sociedad Argentina de Botanica. 2016. Vol. 51, № 4. PP. 657-663.
Горошкевич С.Н. Структура кроны у молодых генеративных деревьев кедра сибирского (Pinus sibirica Du Tour). Пространственная организация разнообразия побегов // Вестник Томского государственного университета. Биология. 2018. № 42. C. 140-159. doi: 10.17223/19988591/42/7
Bartuskova A., Klimesova J. Reiteration in the short lived root-sprouting herb Rorippa palustris: does the origin of buds matter? // Botany. 2010. Vol. 88, № 7. PP. 630-638. https://doi.org/10.1139/B10-044
Савиных Н.П., Шишкина Н.И. Биоморфология Centaurea sumensis Kalen. с позиции охраны вида // Вестник Томского государственного университета. Биология. 2016. № 2 (34). C. 69-86.
Черёмушкина В.А., Гусева А.А. Морфогенез Scutellaria grandiflora (Lamiaceae) и онтогенетическая структура его ценопопуляций // Растительные ресурсы. 2017. T. 53, № 3. C. 380-393.
Navarro T., Pascual V., Cabezudo B., Alados C. Architecture and functional traits of semi-arid shrub species in Cabo de Gata Natural Park, SE Spain // Candollea. 2009. Vol. 64. PP. 69-84. https://doi.org/10.1016/j.jaridenv.2008.09.009
Götmark F., Götmark E., Jensen A.M. Why be a shrub? A basic modeland hypotheses for the adaptive valuesofa common growth form // Frontiers in Plant Science. 2016. Vol. 7. 1095.
Гогина Е.Е. Род чабрец (тимьян) - Thymus L. // Биологическая флора Московской области / отв. ред. Т.А. Работнов. М. : МГУ, 1975. Вып. 2. С. 137-168.
Гогина Е.Е. О некоторых направлениях эволюции жизненных форм в роде Thymus L. // Жизненные формы: структура, спектры, эволюция / отв. ред. Т. И. Серебрякова. М. : Наука, 1981. С. 46-76.
Гогина Е.Е. Изменчивость и формообразование в роде тимьян. М. : Наука, 1990. 208 с.
Cheryomushkina V., Talovskaya E., Astashenkov A. Diversity of architectural units of Thymus (Lamiaceae) dwarf shrubs // Biharean biologist. 2019. № 13 (2). PP. 61-65.
Millan M., Rowe N.P., Edelin C. Deciphering the growth form variation of the Mediterranean chamaephyte Thymus vulgaris L. using architectural traits and their relations with different habitats // Flora. 2019. Vol. 251, PP. 1-10. https://doi.org/10.1016/j.flora.2018.11.021
Гамаюнова А.П., Дмитриева А.А. Thymus L. // Флора Казахстана / под ред. Н.В. Павлова. Т. 7. Алма-Ата : Изд-во АН КазССР, 1964. С. 445-461.
Иващенко А.А., Олонцева А.Х. Многолетние исследования арчевника (Juniperus semiglobosa+J. turkestanica) в заповеднике «Аксу-Джабаглы» // Роль природно-заповiдных територiй у пiдтриьаннi бiорiзноманiття : матерiали наукової конференцiї, присвяченої 80-рiччю Канiвського природного заповiдника (Канiв, 2003 р.). Канiв : Київський національний ун-т ім. Тараса Шевченка, Канівський природний заповідник, 2003. С. 101-104.
Rachkovskaya E.I., Bragina T.M. Steppes of Kazakhstan: Diversity and Present State // Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World. 2012. Vol. 6. PP. 103-148. http://www.springer.com/series/7549
Атажанова Г.А., Рязанцева О.Г., Сейдахметова Р.И., Адекенов С.М. Цитотоксическая активность эфирных масел и их компонентов // Российский биотерапевтический журнал. Материалы всероссийской научно-практической конференции с международным участием «Противоопухолевая терапия: от эксперимента к клинике» (Москва, 20-21 марта 2014 года). 2014. Т. 13, № 1. С. 61.
Карамышева Н.Х. Флора и растительность заповедника Аксу-Джабаглы (Таласский Алатау). Алма-Ата : Наука Казахской ССР, 1973. 178 с.
Рачковская Е.И. Растительный покров Аксу-Жабаглинского заповедника // Труды Аксу-Жабаглинского государственного природного заповедника. 2016. Вып. 11. С. 149-170.
Мазуренко М.Т., Хохряков А.П. Структура и морфогенез кустарников. М. : Наука, 1977. 158 с.
Серебряков И.Г. Экологическая морфология растений: жизненные формы покрытосеменных и хвойных. М. : Высшая школа, 1962. 378 с.
Нухимовский Е.Л. Основы биоморфологии семенных растений. Т. 1. М. : Наука, 1997. 630 с.
Бобров Ю.А. Грушанковые России. Киров : ВятГГУ, 2009. 130 с.
Barthelemy D., Caraglio Y. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny // Annals of botany. 2007. Vol. 99, № 3. PP. 375-407. https://www.jstor.org/stable/42797608
Smirnova O.V., Palenova M.M., Komarov A.S. Ontogeny of different life forms of plants and specific features of age and spatial structure of their populations // Russian Journal of Developmental Biology. 2002. Vol. 33, № 1. PP. 1-10. https://link.springer.com/article/10. 1023/A:1013889926529
Савиных Н.П., Черёмушкина В.А. Биоморфология: современное состояние и перспективы // Сибирский экологический журнал. 2015. Т. 22, № 5. С. 659-670. doi: 10.15372/SEJ20150501
 Biology of <i>Thymus dmitrieva Gamajun</i>. (Lamiaceae) in the protected area (Aksu-Dzhabagly Reserve) | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2019. №  47. DOI: 10.17223/19988591/47/6

Biology of Thymus dmitrieva Gamajun. (Lamiaceae) in the protected area (Aksu-Dzhabagly Reserve) | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2019. № 47. DOI: 10.17223/19988591/47/6

Download full-text version
Counter downloads: 1040