Diversity of the honeybee Apis mellifera L. in Tomsk region according to morphometric and molecular genetic markers
In Siberia, the honeybee was introduced about 230 years ago. It was the darkcolored forest bee Apis mellifera mellifera L., that was cultivated in Siberia as the most adapted to the harsh climatic conditions of the region. At the end of the last century, bees of the southern breeds, mainly Apis mellifera carpathica subspecies (a derivative of A. m. carnica subspecies), were actively imported to Siberia. Introgressive bee hybridization leads to the reduction of the range of native subspecies and the formation of hybrids, modifies the genetic pool of local honeybee populations leading to the loss of their genetic identity. Russia, including Siberia, still has unique abilities to preserve the aboriginal populations of the honeybee. For Siberia, such a unique subspecies is the dark-colored forest bee A. m. mellifera, which is considered endangered in Europe. At present, the knowledge of honeybee subspecies living in Siberia, including Tomsk region, is insufficient; data on the genetic diversity of honeybees are fragmentary. In this regard, the aim of this work was to identify the biological diversity of the A. mellifera honeybee living in Tomsk region using morphometric and molecular genetic markers. A total of 337 bee colonies obtained from 65 apiaries of Tomsk region were investigated using mtDNA analysis (variability of the COI-COII locus) and morphometric method (analysis of wing parameters: cubital and hantel indexes, discoidal shift) (See Fig. 1). The genetic diversity of honeybees was studied using 9 microsatellite loci (A008, AC117, A043, A113, A024, Ap243, Ap049, H110, SV185); a total of 106 bee colonies and 893 individuals were investigated. According to the analysis of variability of the COI-COII mtDNA locus, 62.9% of bee colonies were of A. m. mellifera origin on maternal line, 29.1% of bee colonies were of the origin from the southern subspecies and 8.0% were from mixed colonies. Three variants of the mtDNA COI-COII locus were registered: PQQ, PQQQ (characteristic of A. m. mellifera) and Q (characteristic of subspecies of the southern origin) (See Fig. 2). According to a morphometric study, about 56% of the studied bee colonies conformed to the A. m. mellifera standard according to the majority of morphometric parameters, but for some individual characteristics (mainly the indicator “discoidal shift”), a deviation from the values adopted for this subspecies was recorded. About 24% of the studied bee colonies are more consistent with the A. m. carpathica standard, but also have some signs characteristic of A. m. mellifera (hybrids based on the A. m. carpatica subspecies). Finally, a comparative analysis of the variability of morphometric parameters and variability of the COI-COII mtDNA locus allowed us to identify bee colonies (the so-called “inverted colonies”), which corresponded to the A. m. mellifera standard according to morphometric parameters, but had the Q variant of mtDNA (colony origin from the southern bee subspecies on the maternal line) or, on the contrary, the colonies were the A. m. carpathica subspecies according to morphometric parameters, while mtDNA was specific for A. m. mellifera (See Table 1). Consequently, the study of honeybees in Tomsk region using a comprehensive approach, including morphometric and mtDNA analysis, showed that most bee colonies are represented by hybrid forms both on the basis of A. m. mellifera subspecies and on the basis of A. m. carpathica; hybrids based on A. m. mellifera prevail (See Fig. 3). No large areas were found with a genetically homogeneous array of bees, originating from A. m. mellifera subspecies. At the same time, the apiaries, where A. m. mellifera bees are preserved and bred, were identified in some districts of Tomsk region (Molchanovsky, Chainsky, Zyryansky, Teguldetsky, Tomsky) (See Fig. 3). In order to characterize the genetic diversity of honeybees in Tomsk region, as well as to assess the process of bee hybridization, we analyzed the variability of nine microsatellite loci in honeybees (See Table 2). A comparative analysis of the variability of the studied microsatellite loci in purebred bees (A. m. mellifera and A. m. carpathica) showed differences in the spectrum and/or frequency of alleles between subspecies for most loci. In addition, for some loci (A008, A043, A113, A024, and Ap049), the predominant alleles were recorded (the frequency of their registration was more than 0.40), and the spectrum of these alleles differed in bees of different evolutionary lineages (M and C) (See Table 2). Evaluation of genetic diversity on heterozygosity of most of the studied loci revealed similar results for two bee subspecies, namely lower values of the observed heterozygosity compared with the expected heterozygosity (See Table 2). The revealed differences between honeybees of A. m. mellifera and A. m. carpathica subspecies on the variability of the studied loci were used to assess the genetic diversity of hybrid bees obtained from apiaries of Tomsk region. We have established that both in hybrids based on A. m. mellifera subspecies (variants PQQ and PQQQ of the COI-COII mtDNA locus) and in hybrids based on subspecies of the southern origin (variant Q of the COI-COII locus) the nuclear genome is more consistent with the A. m. mellifera genome in the spectrum and/or frequency of alleles of the studied DNA markers. Using the Principal Coordinate Analysis (PCoA) method (See Fig. 4 and 5), we showed that the genetic diversity of honeybees living in apiaries of Tomsk region is not determined by a single indicator (geographical localization and isolation of apiaries, the bee breed (origin), the level of gene introgression), but by the complex effect of the above factors, whose importance to a certain extent depends on human activity. Thus, the study of genetic diversity, which is determined by numerous factors, as well as evaluation of the level of introgression between aboriginal and adventive subspecies of honey bees are important to establish the effects of hybridization and to preserve the gene pool of local bee subspecies. To preserve and restore the unique gene pool of A. m. mellifera, a Coordinating Council on the problems of selection, rational use and protection of A. m. mellifera gene pool was created in 2019 in Russia. Two researchers from “Apis” Scientific and Production Center, Tomsk State University are its members. The success of measures to preserve aboriginal bee ecotypes will primarily depend on detecting and restoring the unique surviving populations, creating bee nurseries and reserves, as well as on studying the current state of various honeybee populations to understand genetic processess going on in them. The paper contains 5 Figures, 2 Tables and 46 References.
Keywords
Apis mellifera,
генетическое разнообразие,
морфометрический метод,
локус COI-COII мтДНК,
микросателлитные локусы,
Apis mellifera L,
genetic diversity,
morphometric method,
COI-COII locus mtDNA,
microsatellite lociAuthors
Ostroverkhova Nadezhda V. | Tomsk State University | nvostrov@mail.ru |
Rosseykina Svetlana A. | Tomsk State University | rosseykina75@mail.ru |
Konusova Olga L. | Tomsk State University | olga.konusova@mail.ru |
Kucher Aksana N. | Tomsk State University | aksana.kucher@medgenetics.ru |
Kireeva Tatyana N. | Tomsk State University | emilia30@mail.ru |
Всего: 5
References
Meixner M.D., Costa C., Kryger P., Hatjina F., Bouga M., Ivanova E., Buchler R. Conserving diversity and vitality for honey bee breeding // Journal of Apicultural Research. 2010. Vol. 49, № 1. PP. 85-92. doi: 10.3896/IBRA.1.49.1.12
Buchler R., Costa C., Hatjina F., Andonov S., Meixner M.D., Le Conte Y., Uzunov A., Berg S., Bienkowska M., Bouga M., Drazic M., Dyrba W., Kryger P., Panasiuk B., Pechhacker H., Petrov P, Kezic N., Korpela S., Wilde J. The influence of genetic origin and its interaction with environmental effects on the survival of Apis mellifera L. colonies in Europe // Journal of Apicultural Research. 2014. Vol. 53. PP. 205-214. doi: 10.3896/IBRA.1.53.2.03
Pinto M.A., Henriques D., Chavez-Galarza J., Kryger P., Garnery L., van der Zee R., Dahle B., Soland-Reckeweg G., De la Rua P, Dall'Olio R., Carreck N.L., Johnston J.S. Genetic integrity of the dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data // Journal of Apicultural Research. 2014. Vol. 53. PP. 269-278. doi: 10.3896/IBRA.1.53.2.08
Porrini C., Mutinelli F., Bortolotti L., Granato A., Laurenson L., Roberts K., Gallina A., Silvester N., Medrzycki P., Renzi T., Sgolastra F., Lodesani M. The status of honey bee health in Italy: results from the nationwide Bee Monitoring Network // PLoS One. 2016. Vol. 11, № 5. e0155411. doi: 10.1371/ journal.pone.0155411
Martinello M., Baratto C., Manzinello C., Piva E., Borin A., Toson M., Granato A., Boniotti M.B., Gallina A., Mutinelli F. Spring mortality in honey bees in northeastern Italy: detection of pesticides and viruses in dead honey bees and other matrices // Journal of Apicultural Research. 2017.Vol. 56, № 3. PP. 239-254. doi: 10.1080/00218839.2017.1304878
Brodschneider R., Gray A., Adjlane N. and etc. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey // Journal of Apicultural Research. 2018. Vol. 57, № 3. PP. 452-457. doi: 10.1080/00218839.2018.1460911
Browna P., Newstrom-Lloydb L.E., Fosterc B.J., Badgerd P.H., McLeane J.A. Winter 2016 honey bee colony losses in New Zealand // Journal of Apicultural Research. 2018. Vol. 57, № 2. PP. 278-291. doi: 10.1080/00218839.2018.1430980
Requier F., Antunez K., Morales C.L., Sanchez P.A., Castilhos D., Garrido P.M., Giacobino A., Reynaldi F.J., Londono J.M.R., Santos E., Garibaldi L.A. Trends in beekeeping and honey bee colony losses in Latin America // Journal of Apicultural Research. 2018. Vol. 57, № 3. PP. 657-662. doi: 10.1080/00218839.2018.1494919
Gray A., Brodschneider R., Adjlane N. and etc. Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources // Journal of Apicultural Research. 2019. Vol. 58, № 4. PP. 479-485. doi: 10.1080/00218839.2019.1615661
Jensen A.B., Pedersen B.V Honeybee conservation: a case story from Lss0 island, Denmark // Beekeeping and conserving biodiversity of honeybee. Sustainable bee breeding. Hebden Bridge : Northern Bee Books, 2005. PP. 142-164.
De la Rua P., Jaffe R., Dall'Olio R., Serrano J., Munoz I. Biodiversity, conservation and current threats to European honeybees // Apidologie. 2009. Vol. 40, № 3. PP. 263-284. doi: 10.1051/apido/2009027
Soland-Reckeweg G., Heckel G., Neumann P., Fluri P., Excoffier L. Gene flow in admixed populations and implications for the conservation of the Western honeybee, Apis mellifera // Journal of Insect Conservation. 2009. Vol. 13. PP. 317-328. doi: 10.1007/s10841-008-9175-0
Munoz I., Henriques D., Johnston J.S., Chavez-Galarza J., Kryger P., Pinto M.A. Reduced SNP panels for genetic identification and introgression analysis in the dark honey bee (Apis mellifera mellifera) // PLoS One. 2015. Vol. 10. e0124365. doi: 10.1371/journal. pone.0124365
Hassett J., Browne K.A., McCormack G.P., Moore E., Native Irish Honey Bee Society, Soland G., Geary M. A significant pure population of the dark European honey bee (Apis mellifera mellifera) remains in Ireland // Journal of Apicultural Research. 2018. Vol. 57, № 3. PP. 337-350. doi: 10.1080/00218839.2018.1433949
Budge G.E., Pietravalle S., Brown M., Laurenson L., Jones B., Tomkies V., Delaplane K.S. Pathogens as predictors of honey bee colony strength in England and Wales // PLoS One. 2015. Vol. 10, № 7. e0133228. doi: 10.1371/journal.pone.0133228
Chauzat M.-P., Jacques A., Laurent M., Bougeard S., Hendrikx P., Ribiere-Chabert M. Risk indicators affecting honeybee colony survival in Europe: one year of surveillance // Apidologie. 2016. Vol. 47, № 3. PP. 348-378. doi: 10.1007/s13592-016-0440-z
Simone-Finstrom M., Li-Byarlay H., Huang M.H., Strand M.K., Rueppell O., Tarpy D.R. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees // Scientific Reports. 2016. Vol. 6. 32023. doi: 10.1038/srep32023
Wilfert L., Long G., Leggett H.C., Schmid-Hempel P., Butlin R., Martin S.J.M., Boots M. Honeybee disease: Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites // Science. 2016. Vol. 351. PP. 594-597. doi: 10.1126/science.aac9976
Molineri A., Giacobino A., Pacini A., Bulacio Cagnolo N., Merke J., Orellano E., Bertozzi E., Zago L., Aignasse A., Pietronave H., Rodríguez G., Crisanti P., Palacio M.A., Signorini M. Environment and Varroa destructor management as determinant of colony losses in apiaries under temperate and subtropical climate // Journal of Apicultural Research. 2018. Vol. 57, № 4. PP. 551-564. doi: 10.1080/00218839.2018.1475697
Конусова О.Л., Погорелов Ю.Л., Островерхова Н.В., Нечипуренко А.О., Воротов А.А., Климова Е.А., Прокопьев А.С. Медоносная пчела и пчеловодство в Томской области: прошлое, настоящее и будущее // Вестник Томского государственного университета. Биология. 2009. № 4 (8). С. 15-28.
Ильясов Р.А., Поскряков А.В., Николенко А.Г. Семь причин смертности семей пчелы Apis mellifera mellifera в России // Пчеловодство. 2017. № 9. С. 10-14.
van Engelsdorp D., Traynor K.S., Andree M., Lichtenberg E.M., Chen Y., Saegerman C., Cox-Foster D.L. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology // PLoS One. 2017. Vol. 12, № 7. e0179535. doi: 10.1371/journal. pone.0179535
Конусова О.Л., Погорелов Ю.Л., Островерхова Н.В., Россейкина С.А., Нечипуренко А.О., Воротов А.А., Климова Е.А., Прокопьев А.С. Биологическая и хозяйственная оценка семей медоносной пчелы (Apis mellifera L.) в некоторых районах Томской области // Вестник Томского государственного университета. Биология. 2010. № 1 (9). С. 29-41
Островерхова Н.В., Конусова О.Л., Погорелов Ю.Л., Климова Е.А., Воротов А.А. Характеристика митохондриального генома медоносной пчелы Apis mellifera L. (Hymenoptera: Apidae) в популяциях Томской области // II Симпозиум стран СНГ по перепончатокрылым насекомым и 8-й Коллоквиум Российской секции Международного союза исследователей общественных насекомых (IUSSI): Программа и тезисы докладов. СПб., 2010. С. 110
Конусова О.Л., Островерхова Н.В., Кучер А.Н., Курбатский Д.В., Киреева Т.Н. Характеристика морфометрической изменчивости медоносных пчел Apis mellifera L., отличающихся вариантами локуса COI-COII мтДНК // Вестник Томского государственного университета. Биология. 2016. № 1 (33). С. 62-81. doi: 10.17223/19988591/33/5
Островерхова Н.В., Конусова О.Л., Кучер А.Н., Погорелов Ю.Л., Белых Е.А., Воротов А.А. Популяционно-генетическая структура медоносной пчелы (Apis mellifera L.) в районе д. Леботёр Чаинского района Томской области // Вестник Томского государственного университета. Биология. 2013. № 1 (21). С. 161-172
Островерхова Н.В., Конусова О.Л., Кучер А.Н., Киреева Т.Н., Воротов А.А., Белых Е.А. Генетическое разнообразие локуса COI-COII мтДНК медоносной пчелы Apis mellifera L. в Томской области // Генетика. 2015. Т. 51, № 1. С. 89-100. doi: 10.7868/S0016675815010105 28
Островерхова Н.В., Конусова О.Л., Кучер А.Н., Киреева Т.Н., Багиров Р.Т-о. Характеристика генетического разнообразия медоносных пчел (Apis mellifera L.) томской популяции по комплексу ДНК-маркеров // Чтения памяти А. И. Куренцова. 2015. Вып. XXVI. С. 227-240
Ostroverkhova N.V., Kucher A.N., Konusova O.L., Kireeva T.N., Sharakhov I.V. Genetic diversity of honeybees in different geographical regions of Siberia // International Journal of Environmental Studies. 2017. Vol. 74, № 5. PP. 771-781. doi: 10.1080/00207233.2017.1283945
Ostroverkhova N.V., Konusova O.L., Kucher A.N., Sharakhov I.V. A comprehensive characterization of the honeybees in Siberia (Russia) // E. Dechechi Chambo (Ed.) Beekeeping and Bee Conservation - Advances in Research. Grotia : InTech, 2016. PP. 1-37. doi: 10.5772/62395
Meixner M.D., Pinto M.A., Bouga M., Kryger P., Ivanova E., Fuchs S. Standard methods for characterising subspecies and ecotypes of Apis mellifera // COLOSS BEEBOOK / Eds. V. Dietemann, J.D. Ellis, P. Neumann. Vol. I : standard methods for Apis mellifera research // Journal of Apicultural Research. 2013. Vol. 52, № 4. PP. 1-27. doi: 10.3896/ IBRA.1.52.4.05
Munoz I., Henriques D., Jara L., Johnston J.S., Chavez-Galarza J., De La Rua P., Pinto M.A. SNPs selected by information content outperform randomly selected microsatellite loci for delineating genetic identification and introgression in the endangered dark European honeybee (Apis mellifera mellifera) // Molecular Ecology Resources. 2017. Vol. 17, № 4. PP. 783-795. doi: 10.1111/1755-0998.12637
Nawrocka A., Kandemir І., Fuchs S., Tofilski A. Computer software for identification of honey bee subspecies and evolutionary lineages // Apidologie. 2018. Vol. 49. PP. 172-184. doi: 10.1007/s13592-017-0538-y
Parejo M., Henriques D., Pinto M.A., Soland-Reckeweg G., Neuditschko M. Empirical comparison of microsatellite and SNP markers to estimate introgression in Apis mellifera mellifera // Journal of Apicultural Research. 2018. Vol. 57, № 4. PP. 551-564. doi: 10.1080/00218839.2018.1494894
Henriques D., Chavez Galarza J.C., Quaresma A., Pinto M.A. From the popular tRNAleu-COX2 intergenic region to the mitogenome: insights from diverse honey bee populations of Europe and North Africa // Apidologie. 2019. Vol. 50, № 2. PP. 111-120. doi: 10.1007/ s13592-019-00632-9
Ruttner F. Biogeography and taxonomy of honey bees. Berlin : Springer-Verlag, 1988. 284 p.
Авдеев Н.В., Макарова Н.Е., Петухов А.В. Выявление уровня «генетического загрязнения» по характеристикам жилкования крыла // Пчеловодство. 2009. № 7. С. 21-24.
Алпатов В.В. Породы медоносной пчелы. М. : Изд-во Моск. общества испытателей природы, 1948. 183 с.
Cauia E., Usurelu D., Magdalena L.M., Cimponeriu D., Apostol P., Siceanu A., Holban A., Gavrila L. Preliminary researches regarding the genetic and morphometric characterization of honeybee (A. mellifera L.) from Romania // Scientific Papers Animal Science and Biotechnologies. 2008. Vol. 41, № 2. PP. 278-286.
Никоноров Ю.М., Беньковская Г.В., Поскряков А.В., Николенко А.Г., Вахитов В.А. Использование метода ПЦР для контроля чистопородности пчелосемей Apis mellifera mellifera L. в условиях Южного Урала // Генетика. 1998. Т. 34, № 11. С. 1574-1577.
Solignac M., Vautrin D., Loiseau A., Mougel F., Baudry E. Five hundred and fifty microsatellite markers for the study of the honey bee (Apis mellifera L.) genome // Molecular Ecology Notes. 2003. Vol. 3. PP. 307-311. doi: 10.1046/j.1471-8286.2003.00436.x
Животовский Л.А. Статистические методы анализа частот генов в природных популяциях // Итоги науки и техники. Общая генетика. М. : ВИНИТИ, 1983. Т. 8. С. 76-104.
Peakall R., Smouse P.E. GenAlEx 6: genetic analysis in Excel. Population Genetic Software for teaching and research // Molecular Ecology Notes. 2006. Vol. 6. PP. 288-295.
Ильясов Р.А., Поскряков А.В., Петухов А.В., Николенко А.Г. Молекулярногенетический анализ пяти сохранившихся резерватов темной лесной пчелы Apis mellifera mellifera Урала и Поволжья // Генетика. 2016. Т. 52, № 8. С. 931-942. doi: 10.7868/S0016675816060059
Селекционный центр (ассоциация) по среднерусской породе пчел медоносных. URL: http://apis-mellifera-mellifera-l.ru/novosti/v-mezhdunarodnaya-nauchno-prakticheskaya-konferencziya.html (дата обращения: 25.08.2019).
Bourgeois L., Beaman L. Tracking the genetic stability of a honey bee (Hymenoptera: Apidae) breeding program with genetic markers // Journal of Economic Entomology. 2017. Vol. 110, № 4. PP. 1419-1423. doi: 10.1093/jee/tox175