Podzol development on different aged coastal bars of Lake Ladoga
This paper presents the result of the studies of soil formation on different aged coastal bars in the transgression zone of Lake Ladoga in the Nizhnesvirsky Nature Reserve (Leningrad region, North-West of the Russian Federation). The investigation presents the data on soil chronoseries, located on four Ladoga coastal bars of different ages from 70±25 to 1590±25 years BP. We estimated the trends of accumulation and transformation of organic matter, elemental composition of humic acids (HAs), development of plant communities and the influence of soil formation factors on the formation rate of soil horizons. We assessed the degree of soil organic matter stabilization using modern instrumental methods (spectroscopy of nuclear magnetic resonance CP/MAS 13C-NMR). An integral indicator of the hydrophobicity of HAs, which represents the total fraction of unoxidized carbon atoms, is proposed. The Ladoga Holocene transgression is one of the most informative and applicable models for pedogenesis; successional processes occurring in young and mature areas can be traced here. We identified local processes of soil formation such as podzolization, gleyfication, peat formation and humus accumulation. Physical, physical-chemical and biological soil properties with a detailed description of the morphology of soil of different aged coastal bars are presented. The paper contains 6 Figures, 7 Tables and 71 References.
Keywords
Подзолы,
почвообразование,
генезис почв,
13С-ЯМР,
гуминовые вещества,
Podzols,
soil formations,
soil genesis,
13C-NMR,
Humic substancesAuthors
Abakumov Evgeny V. | St. Petersburg State University | e_abakumov@mail.ru |
Polyakov Vyacheslav I. | St. Petersburg State University | slavon6985@gmail.com |
Orlova Ksenia S. | St. Petersburg State University | Orlkse@yandex.ru |
Всего: 3
References
Orlov D.S. Pochvennaya khimiya: Uchebnik [Soil Chemistry: A Textbook]. Moscow: Moscow State University Publ.; 1985. 376 p. In Russian
Polyakov V., Abakumov E. Molecular composition of humic substances isolated from selected soils and cryconite of the Gr0nljorden area, Spitsbergen. Polish Polar Research. 2019;40(2):105-120. doi: 10.24425/ppr.2019.128369
Xu J., Zhao B., Chu W., Mao J. and Zhang J. Chemical nature of humic substances in two typical Chinese soils (upland vs paddy soil): A comparative advanced solid state NMR study. Science of The Total Environment. 2017;576:444-452. doi: 10.1016/j.scitotenv.2016.10.118
Panettieri M., Knicker H., Murillo J.M., Madejon E., Hatcher P.G. Soil organic matter degradation in an agricultural chronosequence under different tillage regimes evaluated by organic matter pools, enzymatic activities and CPMAS '≡C NMR. Soil Biology and Biochemistry. 2014;78:170-181. doi: 10.1016/j.soilbio.2014.07.021
Beznosikov V.A., Lodygin E.D. High-molecular organic substances in soils. Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences. 2010;1:24-30. In Russian
Baldock J.A., Preston C.M. Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear magnetic resonance. In: Carbon Forms and Functions in Forest Soils. Kelly JM and McFee WW, editors. Madison, Wisconsin, USA: Soil Science Society of America Inc.; 1995. 89-117 pp.
Dutta K., Schuur A.G., Neff J.C., Zimov S.A. Potential carbon release from permafrost soils of Northeastern Siberia. Global Change Biology. 2006;12:2336-2351. doi: 10.1111/j.1365-2486.2006.01259.x
Kurach V., Frouz I., Kurach M., Mako A., Shustr J., Chepek D., Romanov O.V., Abakumov E.V. Changes of some physical properties of soils in the chronoserry of the sites of selfemergence of the farm-department Sokol complex, Czech Republic. Eurasian Soil Science. 2012;3:309-316.
Abakumov E.V. Chronology of primary soil ontogenesis: A problem review. Vestnik Sankt-Peterburgskogo Universiteta. Seriya 3. Biologiya. 2011;3:114-119. In Russian
Sauer D., Wagner S., Brukner H. Soil development on marine terraces near Metaponto (Gulf of Taranto, southern Italy). Quaternary international. 2010;222:48-63. doi: 10.1016/j. quaint.2009.09.030
Wilcken H., Sorge C., Schulten H-R. Molecular composition and chemometric differentiation and classification of soil organic matter in Podzol B-horizons. Geoderma. 1997;76:193-219. doi: 10.1016/S0016-7061(96)00107-3
Reintam L., Elmar K., Rooma I. Development of soil organic matter under pine on quarry detritus of open-cast oil-shale mining. Forest Ecology and Management. 2002;171:191-198 doi: 10.1016/S0378-1127(02)00472-3
Skjemstad J.O., Waters A.G., Hanna J.V., Oades J.M. Genesis of Podzols on coastal dunes in Southern Queensland. IV. Nature of the organic fraction as seen by 13C nuclear magnetic resonance spectroscopy. Australian Journal of Soil Research. 1992;30:667-681. doi: 10.1071/SR9920667
Lentz H., Lademann H.D., Ziechmann W. Proton resonance spectra of humic acids from the solum of a Podzol. Geoderma. 1973;18:325-328. doi: 10.1016/0016-7061(77)90040-4
Frouz J., Novakova A. Interactions between soil development, vegetation, and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology. 2004;44:109-121. doi: 10.1016/j.ejsobi.2007.09.002
Bardy M., Fritsch E., Derenne S., Allard T., Nascimento N.R., Bueno G.T. Micromorphology and spectroscopic characteristics of organic matter in waterlogged podzols of the upper Amazon basin. Geoderma. 2008;145(3-4):222-230. doi: 10.1016/j.geoderma.2008.03.008
Parfitt R.L., Yuan G., Theng BKG. A 13C-NMR study of the interactions of soil organic matter with aluminum and allophane in podzols. European Journal of Soil Science. 1999;50:695-700. doi: 10.1046/j.1365-2389.1999.00274.x
Dai K.H., Johnson C.E. Applicability of solid-state 13C CP/MAS NMR analysis in Spodosols: chemical removal of magnetic materials. Geoderma. 1999;93:289-310. doi: 10.1016/ S0016-7061(99)00072-5
Buurman P., Jongmans A.G. Podzolisation and soil organic matter dynamics. Geoderma. 2005;125(1-2):71-83. doi: 10.1016/j.geoderma.2004.07.006
Emmer I.M., Sevink J. Temporal and vertical changes in the humus form profile during a primary succession of Pinus sylvestris. Plant and Soils. 1994;167:281-295.
Nierop K.G., Buurman P., de Leeuw J.W. Effect of vegetation on chemical composition of H horizons in incipient podzols as characterized by NMR and pyrolysis-GC/MS. Geoderma. 1999;90(1-2):111-129. doi: 10.1016/S0016-7061(98)00095-0
Frouz J., Keplin B., Pizl V., Tajovsky K., Stary J., Lukesova A., Novakova A., Balik V., Hanel L., Materna J., Duker C, Chalupsky J., Rusek J., Heinkele T. Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecolog. Engineer. 2001;17:275-284. doi: 10.1016/S0925-8574(00)00144-0
Olsson M., Melkerud P-A. Chemical and mineralogical changes during genesis of a Podzol from till in Southern Sweden. Geoderma. 1989;45(3-4):267-287. doi: 10.1016/0016-7061(89)90011-6
Lodygin E.D., Beznosikov V.A., Vasilevich R.S. Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study). Eurasian Soil Science. 2014;47:400-406. doi: 10.1134/S1064229314010074
Vasilevich R.S., Lodygin E.D., Beznosikov V.A. Molecular-mass distribution of tundra soils humic substances from the European northeast of Russia. Vestnik of Saint-Petersburg State University. Seriya 3. Biologiya. 2015;4:103-111. In Russian
Swift R.S. Organic matter characterization. In: Methods of soil analysis. Part 3. Chemical methods. Sparks DL, editor. Bigham JM, editor-in-chief. Madison, Wisconsin, USA: Soil Science Society of America, Inc. and American Society of Agronomy, Inc.; 1996;5:1018-1020.
Orlov D.S. Khimiya pochv [Chemistry of soils]. Moscow: MSU Publishing House; 1981. 376 p. In Russian
Abakumov E.V., Mukhametova N. Microbial biomass and basal respiration of selected Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations. Solid Earth. 2014;5:705-712. doi: 10.5194/se-5-705-2014
Vance E.D., Brookes P.C., Jenkinson D.S. An extraction method for measuring soil microbial biomass. Soil Biology and Biochemistry. 1987;6:703-707. doi: 10.1016/0038-0717(87)90052-6
Jenkinson D.S., Powlson D.S. The effects of biocidal treatment on metabolism in soil. V. A method for measuring soil biomass. Soil Biology and Biochemistry. 1976;8:209-213. doi: 10.1016/0038-0717(76)90005-5
Wentworth C.K. A scale of grade and class terms for clastic sediments. The Journal of Geology. 1922;30(5):377-392.
Rozhkov V.A., Bondarev A.G., Kuznetsova I.V., Rakhmatulloev K.R. Fizicheskie i vodno-fizicheskie svoystva pochv: Uchebno-metodicheskoe posobie [Physical and hydrophysical properties of soils. Manual]. Moscow: MGUL Publ.; 2002. 75 p. In Russian
Assessment methods for soil carbon. Lal R., Kimble J.M., Follet R.F. and Stewart B.A., editors. USA: Lewis Publ.; 2001. 676 p.
IUSS Working Group WRB. World reference base for soil resources 2014. International soil classification system for naming and creating legends for soil maps World Soil Resources Reports 106. FAO. Rome; 2015. 203 p.
Ponomareva V.V. Usloviya vodno-mineral'nogo pitaniya rasteniy kak glavnyy faktor fitotsenogeneza i pochvoobrazovaniya [Conditions of water-mineral nutrition of plants as the main factor of phytocoenogenesis and soil formation]. Pochvovedenie = Eurasian Soil Science. 1984;8:29-38. In Russian
Lodygin E, Beznosikov V, Abakumov E. Humic substances elemental composition of selected taiga and tundra soils from Russian European North-East. Polish Polar Research. 2017;38:125-147
Celi L, Schnitzer M, Negre M. Analysis of carboxyl groups in soil humic acids by a wet chemical method, Fourier-transform infrared spectrophotometry, and solution state carbon-13 nuclear magnetic resonance. A comparative study. Soil Science. 1997;162:189-197. doi: 10.1097/00010694-199703000-00004
Lodygin E.D., Beznosikov V.A. The molecular structure and elemental composition of humic substances from Albeluvisols. Chemistry and Ecology. 2010;26:87-95. doi: 10.1080/02757540.2010.497759
Ejarque E., Abakumov E. Stability and biodegradability of organic matter from Arctic soils of Western Siberia: Insights from 13C-NMR spectroscopy and elemental analysis. Solid Earth. 2016;7:153-165.
Aleksandrovskii A.L., Arslanov K.A., Davydova N.N., Doluchanov P.M., Zaitseva G.I., Kirpichnikov A.N., Kuznetsov D.D., Lavento M., Ludikova A.V., Nosov E.N., Savel'eva L.A., Sapelko T.V., Subetto D.A. New data on the Ladoga transgression, the Neva River formation, and agricultural development of northwestern Russia. Doklady Earth Sciences. 2009;425:274-278. doi: 10.1134/S1028334X09020226
Versilin N.N., Kleimenova G.I. On the problem of comprehension of Ladoga transgression and origin of Neva River. Izvestiya Russkogo Geograficheskogo Obshchestva. 2012;144(4):33a-41. In Russian
Sheetov M.V., Biske Y.S., Sumarev I.V. Late Holocene paleoseismic event at southeastern coast of Ladoga Lake. II. Parameters. Vestnik Sankt-Peterburgskogo Universiteta. Seriya 7. Geologiya. Geografiya = Vestnik of Saint-Petersburg University. Earth Sciences. 2010;7(3):18-28. In Russian
Sheetov M.V., Biske Y.S., Pleshivtseva E.S., Marakov A.Y. Late-Holocene water-level changes of the Volkhov river near Staraya Ladoga Late-Holocene water-level changes of the Volkhov River near Staraya Ladoga. Vestnik Sankt-Peterburgskogo Universiteta. Seriya 7. Geologiya. Geografiya = Vestnik of Saint-Petersburg University. Earth Sciences. 2005;7(4):3-16. In Russian
Ladoga. Rumyantseva V.A. and Kondratieva S.A., editors. St. Petersburg: Nestor-History Publ.; 2013. 467 p. In Russian
Ludikova A.V. Diatom evidences for the mid-Holocene Lake Ladoga transgression. Izvestiya Russkogo Geograficheskogo Obshchestva. 2015;147(4):38-51. In Russian
Biske Y.S., Sumarev I.V., Sheetov M.V. Late Holocene paleoseismic event at southeastern coast of Lake Ladoga. I. Principles of research and deformation structures. Vestnik Sankt-Peterburgskogo Universiteta. Seriya 7. Geologiya. Geografiya = Vestnik of Saint-Petersburg University. Earth Sciences. 2009;7(1):3-25. In Russian
Gerasimov D.V., Subetto D.A. History of lake Ladoga in the light of archaeological data. Izvestia: Herzen University Journal of Humanities & Sciences. 2009;106:37-49. In Russian
Subetto D.A. The history of Ladoga lake forming and of it's connection to the Baltic sea. Society. Environment. Development. 2007;1:111-120. In Russian
Valerio M.W., McDaniel P.A., Gessler P.E. Distribution and properties of podzolized soils in the northern rocky mountains. Soil Science Society of America Journal. 2016;80(5):1308-1316. doi: 10.2136/sssaj2016.04.0109
Schaetzl R.J., Isard S.A. The distribution of Spodosol soils in southern Michigan: A climatic interpretation. Annals of the American Association of Geographers. 1991;81:425-442. doi: 10.1111/j.1467-8306.1991.tb01703.x
Nadporozhskaya M.A., Mohren G.M.J., Chertov O.G., Komarov A.S., Mikhailov A.V. Soil organic matter dynamics at primary and secondary forest succession on sandy soils in the Netherlands: An application of soil organic matter model ROMUL. Ecol. Model. 2006;190 (3/4):399-418. doi: 10.1016/j.ecolmodel.2005.03.025
Cerli C, Celi L, Kaiser K, Guggenberger G, Johansson M-B, Cignetti A, Zanini E. Changes in humic substances along an age sequence of Norway spruce stands planted on former agricultural land. Organic Geochemistry. 2008;39:1269-1280. doi: 10.1016/j. orggeochem.2008.06.001
Abakumov E.V., Trubetskoj O., Demin D., Celi L., Cerli C., Trubetskaya O. Humic acid characteristics in podzol soil chronosequence. Chem Ecol. 2010;26:59-66. doi: 10.1080/02757540.2010.497758
Abakumov E.V., Frouz J. Evolution of the soil humus status on the calcareous neogene clay dumps of the Sokolov quarry complex in the Czech Republic. Eurasian Soil Science. 2009;7:773-779.
Cerli C., Celi L., Johansson M-B., Kogel-Knabner I., Rosenqvist L., Zanini E. Soil organic matter changes in a spruce chronosequence I. Carbon and lignin dynamics. Soil Science. 2006;171:837-849. doi: 10.1097/01.ss.0000228061.23334.98
Gagarina E.I., Shelemin A.N. Evolyutsionnyye aspekty pochvoobrazovaniya na zemlyanykh voyennykh ob”yektakh [Evolutionary aspects of soil formation at land military sites]. In: Problemy evolyutsii pochv [Problems of the evolution of soils. Proceedings of the Russian Conf.]. Pushchino: Pushchino Scientific Center of the Russian Academy of Sciences Publ.; 2003. pp. 157-160. In Russian
Melkerud P-A., Bain D.C., Jongmans A.G., Tarvainen T. Chemical, mineralogical and morphological characterization of three podzols developed on glacial deposits in northern Europe. Geoderma. 2000;94:125-148. doi: 10.1016/S0016-7061(99)00043-9
Jauhiainen E. Age and degree of podzolization of sand soils on the coastal plain of northwest Finland. Soc. Sci. Fenn. Commentat. Biol. 1973;68:1-32.
Emmer I.M. Humus form and soil development during a primary succession of monoculture Pinus sylvestris forests on poor sandy substrates. PhD Thesis. Amsterdam: Universiteit van Amsterdam; 1995. 135 p.
Dickson B.A., Crocker R.L. A chronosequence of soils and vegetation near Mount Shasta, California: III. Some properties of the mineral soils. J Soil Science. 1954;5:173-191. doi: 10.1111/j.1365-2389.1954.tb02186.x
Alexander E.B., Burt R. Soil development on moraines of Mendenhall Glacier, southeast Alaska: 1. The moraines and soil morphology. Geoderma. 1996;72:1-17. doi: 10.1016/0016-7061(96)00021-3
Burges A., Drover D.P. The rate of Podzol development in sands of the Woy Woy district, N.S.W. Australian Journal of Botany. 1953;1:83-94. doi: 10.1071/BT9530083
Barrett L.R., Schaetzl R.J. An examination of podsolization near Lake Michigan using chronofunctions. Canadian J Soil Science. 1992;72:527-541. doi: 10.4141/cjss92-044
Dymov A.A., Gabov D.N. Pyrogenic alterations of Podzols at the North-East European part of Russia: Morphology, carbon pools, PAH content. Geoderma. 2015;241-242:230-237. doi: 10.1016/j.geoderma.2014.11.021
Abakumov E.V., Gagarina E.I., Popov A.I. Humus formation and development of Podzol soil during primary succession of plant on mining-quarries complex in taiga zone (Leningrad Region). Ecology and Future-Bulgarian Journal of Ecological Science. 2003;3(4):22-25.
Paton T.R., Mitchell P.B., Adamson D., Buchanan R.A., Fox M.D., Bowman G. Speed of podzolisation. Nature. 1996;260(5552):601-602. doi: 10.1038/260601a0
Aleksandrovsky A.L., Alexandrovskaya E.I. Evolyutsiya pochv i geograficheskaya sreda [Evolution of soils and geographic environment]. Moscow: Nauka Publ.; 2005. 223 p. In Russian
Bronick C.J., Mokma D.L. Podzolization in a sand pit in Northern Michigan. Soil Science Society of America J. 2005;69(6):1757-1760. doi: 10.2136/sssaj2004.0119
Abakumov E.V., Lisitsyna O.V., Gagarina E.I. Samovosstanovleniye rastitel'nosti i nachal'nykh stadiy pochvoobrazovaniya v posttekhnogennykh mestorozhdeniyakh Maluksinskogo peschanogo kar'yera. In: Ekologiya i biologiya pochv . Kazeev K. and Kolesnikov S., editors. Rostov on Don: Tsentry valeologii vuzov Rossii Publications; 2004. pp. 3-7. In Russian
Abakumov E.V. Accumulation and transformation of organic matter in different-aged dumps from sand quarries. Eurasian Soil Science. 2008;8:988-963. doi: 10.1134/ S1064229308080061
Mokma D.L., Yli-Halla M., Linfqvist K. Podzol formation in sandy soils of Finland. Geoderma. 2004;120:259-272. doi: 10.1016/j.geoderma.2003.09.008