Hydrogen sulfide and plant adaptation to abiotic stressors | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2019. № 48. DOI: 10.17223/19988591/48/8

Hydrogen sulfide and plant adaptation to abiotic stressors

Hydrogen sulfide (H2S) is one of the key gasotransmitters in plant and animal cells. The term “hydrogen sulfide” means not only H2S as a dissolved gaseous compound, but also the HS- anion, into which, under physiologically normal conditions, about 80% of molecular hydrogen sulfide is converted. One of the most notable hydrogen sulfide physiological effects is the activation of adaptive plant responses. However, the activation mechanisms of plant stress-protective systems under the H2S influence, direct targets of its action, signaling and hormonal mediators providing physiological effects, remain poorly understood. Analysis and systematization of information on hydrogen sulfide synthesis, signaling, and activation of adaptive reactions with its participation became the aim of this review. Hydrogen sulfide synthesis. To date, it has been found that in plants hydrogen sulfide can be synthesized using six enzymes (See Fig. 1). Conversion of L-cysteine to pyruvate catalyzed by L-cysteine desulfhydrase with release of hydrogen sulfide and ammonium is considered as one of the main ways of synthesizing H2S in plants. It is also possible to form hydrogen sulfide from D-cysteine under the action of D-cysteine desulfhydrase. Hydrogen sulfide can also be synthesized by sulfite reduction with the participation of sulfite reductase. Formation of hydrogen sulfide in plants involving β-cyanoalanine synthase, cysteine synthase and carbonic anhydrase is also expected. Hydrogen sulfide signaling. Hydrogen sulfide does not have specific molecular receptors. It is assumed that primary molecular effects of H2S are associated with S-sulfhydration (persulfidation) - conversion of -SH cysteine residues to -SSH. The most common proteins whose state is regulated by sulfhydration are peroxyredoxins, which, in turn, are among the key participants in cellular redox regulation. Hydrogen sulfide is also involved in processes of redox regulation occuring with participation of reactive oxygen species (ROS) and nitric oxide (NO), and can affect cell calcium homeostasis (See Fig. 2). In this case, however, the sequence of arrangement of these intermediaries in formation of various adaptive reactions of plants in many cases remains unknown. There is evidence of an increase in the ROS content in plant cells under the influence of hydrogen sulfide, due, primarily, to the activation of NADPH oxidase. At the same time, synthesis of hydrogen sulfide can be induced by an action of hydrogen peroxide on plant objects. Hydrogen sulfide can directly and indirectly influence activity and expression of antioxidant enzyme genes, which also affects cell redox homeostasis. It was shown that hydrogen sulfide and nitric oxide can act on the same protein targets, causing effects of persulfidation or nitrosylation. Moreover, NO and H2S also affect the intracellular content of each other. Hydrogen sulfide is in a rather complex functional interaction with calcium ions. Activation of hydrogen sulfide synthesis associated with increased expression of L-cysteine desulfhydrase gene can be induced with calcium and calmodulin. On the other hand, hydrogen sulfide can cause an opening of calcium channels of plant cells. Hydrogen sulfide interacts with a complex network of hormonal signaling too (See Fig. 2). In particular, its synthesis can be induced by abscisic acid (ABA). On the other hand, H2S can mediate physiological effects of ABA. Hydrogen sulfide can activate synthesis of jasmonic acid in plants. Also, H2S is involved in plant adaptive reactions induction under influence of salicylic acid and polyamines. In general, hydrogen sulfide is involved in a complex regulatory network of signaling and hormonal mediators. Participation in plant adaptation. In response to the impact of many stressors (high and low temperatures, dehydration, salinization), the content of endogenous hydrogen sulfide in plants increases. Moreover, mutants defective in the hydrogen sulfide synthesis were not resistant to action of these stress factors. Plant treatment with hydrogen sulfide donors (in particular, sodium hydrosulfide NaHS) increases resistance of plants to stress temperatures, drought, salt stress, action of heavy metals, UV-B and other factors (See Table). Hydrogen sulfide has a pronounced activating effect on expression of antioxidant enzyme genes, accumulation of polyfunctional low-molecular-weight protective compounds, in particular proline and sugars. Of particular importance for plant adaptation is the accumulation under the influence of hydrogen sulfide of a wide range of secondary metabolites, including phenolic compounds and flavonoids, which have a pronounced antioxidant effect. Hydrogen sulfide is also involved in regulation of plant stomatal reactions. Dependence of the stomata closing process under osmotic and salt stress on the activity of cysteine desulfhydrase and H2S synthesis was shown. The effect of hydrogen sulfide on stomatal aperture, as well as other stomata closing inducers, is associated with a change in the ion channels state, in particular, potassium channels (K+out) of guard cells. ROS, calcium ions and, possibly, components of lipid signaling are involved in the implementation of these effects of hydrogen sulfide. Hydrogen sulfide donors can be used not only to induce adaptive reactions of plants, but also in storage technology for agricultural products. The use of NaHS during storage of fruit and berries prevents their ripening and aging, contributes to the preservation of a pool of antioxidants, in particular, ascorbic acid, phenolic compounds and flavonoids. Also, hydrogen sulfide can be used to extend the life of cut flowers. A further study of stress-protective effects of hydrogen sulfide will allow, on the one hand, to more deeply understand the adaptation mechanisms, and, on the other hand, to create theoretical foundations for new approaches in agrobiotechnology. The paper contains 2 Figures, 1 Table and 93 References.

Download file
Counter downloads: 339

Keywords

сероводород, активные формы кислорода, кальций, оксид азота, фитогормоны, антиоксидантная система, устойчивость, hydrogen sulfide, reactive oxygen species, calcium, nitric oxide, phytohormones, antioxidant system, resistance

Authors

NameOrganizationE-mail
Kolupaev Yuriy E.Dokuchaev Kharkiv National Agrarian Universityplant.biology.knau@gmail.com
Yastreb Tatiana O.Dokuchaev Kharkiv National Agrarian Universityplant.biology.knau@gmail.com
Всего: 2

References

Wang H., Ji F., Zhang Y., Hou J., Liu W., Huang J., Liang W. Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium toxicity // Plant, Cell & Environment. 2019. Vol. 42, № 8. PP. 2340-2356. https://doi.org/10.1111/pce.13555
Janicka M., Reda M., Czyzewska K., Kabala K. Involvement of signalling molecules NO, H2O2 and H2S in modification of plasma membrane proton pump in cucumber roots subjected to salt or low temperature stress // Functional Plant Biology. 2018. Vol. 45, № 4. PP. 428-439. https://doi.org/10.1071/FP17095
Lai D.W., Mao Y., Zhou H., Li F., Wu M., Zhang J., He Z., Cui W., Xie Y. Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa // Plant Science. 2014. Vol. 225. PP. 117-129. https://doi.org/10.1016/j.plantsci.2014.06.006
Jin Z.P., Shen J.J., Qiao Z.J., Yang G.D., Wang R., Pei Y.X. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana // Biochemical and Biophysical Research Communications. 2011. Vol. 414, № 3. PP. 481-486. https://doi.org/10.1016/j.bbrc.2011.09.090
Du X., Jin Z., Liu D., Yang G., Pei Y. Hydrogen sulfide alleviates the cold stress through MPK4 in Arabidopsis thaliana // Plant Physiology and Biochemistry. 2017. Vol. 120. PP. 112-119. https://doi.org/10.1016/j.plaphy.2017.09.028
Fu P.N., Wang W.J., Hou L.X., Liu X. Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L. // Acta Societatis Botanicorum Poloniae. 2013. Vol. 82, № 4. PP. 295-302. https://doi.org/10.5586/asbp.2013.031
Pal M., Szalai G., Janda T. Speculation: Polyamines are important in abiotic stress signaling // Plant Science. 2015. Vol. 237. PP. 16-23. https://doi.org/10.1016/j.plantsci.2015.05.003
Li Q., Wang Z., Zhao Y., Zhang X., Zhang S., Bo L., Wang Y., Ding Y., An L. Putrescine protects hulless barley from damage due to UV-B stress via H2S- and H2O2-mediated signaling pathways // Plant Cell Reports. 2016. Vol. 35, № 5. PP. 1155-1168. https://doi. org/10.1007/s00299-016-1952-8
Li Z.-G., Xie L.-R., Li X.-J. Hydrogen sulfide acts as a downstream signal molecule in salicylic acid-induced heat tolerance in maize (Zea mays L.) seedlings // Journal of Plant Physiology. 2015. Vol. 177. PP. 121-127. https://doi.org/10.1016/j.jplph.2014.12.018
Tian B., Zhang Y., Jin Z., Liu Z., Pei Y. Role of hydrogen sulfide in the methyl jasmonate response to cadmium stress in foxtail millet // Frontiers in Bioscience (Landmark). 2017. Vol. 22. PP. 530-538. http://dx.doi.org/10.2741/4500
Shan C., Wang T., Zhou Y., Wang W. Hydrogen sulfide is involved in the regulation of ascorbate and glutathione metabolism by jasmonic acid in Arabidopsis thaliana // Biologia Plantarum. 2018. Vol. 62, № 1. PP. 188-193. https://doi.org/10.1007/s10535-017-0740-9
Shan C., Zhang S., Zhou Y. Hydrogen sulfide is involved in the regulation of ascorbateglutathione cycle by exogenous ABA in wheat seedling leaves under osmotic stress // Cereal Research Communications. 2017. Vol. 45, № 3. PP. 411-420. https://doi. org/10.1556/0806.45.2017.021
Chen X., Chen Q., Zhang X., Li R., Jia Y., Ef A.A., Jia A., Hu L., Hu X. Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions // Plant Physiology and Biochemistry. 2016. Vol. 104. PP. 174-179. https://doi. org/10.1016/j.plaphy.2016.02.033
Jin Z., Xue S., Luo Y., Tian B., Fang H., Li H., Pei Y. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis // Plant Physiology and Biochemistry. 2013. Vol. 62. PP. 41-46. https://doi.org/10.1016/j. plaphy.2012.10.017
Fang H.H., Pei Y.X., Tian B.H., Zhang L.P., Qiao Z.J., Liu Z.Q. Ca2+ participates in H2S induced Cr6+ tolerance in Setaria italica // Chinese Journal of Cell Biology. 2014. Vol. 36, № 6. PP. 758-765.
Valivand M., Amooaghaie R., Ahadi A. Interplay between hydrogen sulfide and calcium/ calmodulin enhances systemic acquired acclimation and antioxidative defense against nickel toxicity in zucchini // Environmental and Experimental Botany. 2019. Vol. 158. PP. 40-50. https://doi.org/10.1016/j.envexpbot.2018.11.006
Fang H., Liu Z., Long Y., Liang Y., Jin Z., Zhang L., Liu D., Li H., Zhai J., Pei Y. The Ca2+/calmodulin2-binding transcription factor TGA3 elevates LCD expression and H2S production to bolster Cr6+ tolerance in Arabidopsis // The Plant Journal. 2017. Vol. 91, № 6. PP. 1038-1050. https://doi.org/10.1111/tpj.13627
Li Z.G., Long W.B., Yang S.Z., Wang Y.C., Tang J.H., Wen L., Zhu B.Yu., Min X. Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures // Acta Physiologiae Plantarum. 2015. Vol. 37 : 219. https://doi.org/10.1007/s11738-015-1971-z
Kaur N., Gupta A.K. Signal transduction pathways under abiotic stresses in plant // Current Science. 2005. Vol. 88, № 11. PP. 1771-1780.
Kolupaev Yu.E., Karpets Yu.V., Dmitriev A.P. Signal mediators in plants in response to abiotic stress: calcium, reactive oxygen and nitrogen species // Cytology and Genetics. 2015. Vol. 49, № 5. PP. 338-348. https://doi.org/10.3103/S0095452715050047
Li Z.G., Yang S.Z., Long W.B., Yang G.X., Shen Z.Z. Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings // Plant, Cell & Environment. 2013. Vol. 36. № 8. PP. 1564-1572. https://doi. org/10.1111/pce.12092
Liang Y., Zheng P., Li S., Li K., Xu H. Nitrate reductase-dependent NO production is involved in H2S-induced nitrate stress tolerance in tomato via activation of antioxidant enzymes // Scientia Horticulturae. 2018. Vol. 229. PP. 207-214. https://doi.org/10.1016/j. scienta.2017.10.044
Kolupaev Yu.E., Karpets Yu.V., Beschasniy S.P., Dmitriev A.P. Gasotransmitters and their role in adaptive reactions of plant cells // Cytology and Genetics. 2019. Vol. 53, № 5. PP. 392-406. DOI: 10.3103/S0095452719050098
Singh V.P., Singh S., Kumar J., Prasad S.M. Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate-glutathione cycle: possible involvement of nitric oxide // Journal of Plant Physiology. 2015. Vol. 181. PP. 20-29. https://doi.org/10.1016/j.jplph.2015.03.015
Wang Y., Li L., Cui W., Xu S., Shen W., Wang R. Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway // Plant and Soil. 2012. Vol. 351, № 1-2. PP. 107-119. https://doi.org/10.1007/ s11104-011-0936-2
Aroca A., Schneider M., Scheibe R., Gotor C., Romero L.C. Hydrogen sulfide regulates the cytosolic/nuclear partitioning of glyceraldehyde-3-phosphate dehydrogenase by enhancing its nuclear localization // Plant and Cell Physiology. 2017. Vol. 58, № 6. PP. 983-992. https://doi.org/10.1093/pcp/pcx056
Hancock J.T., Henson D., Nyirenda M., Desikan R., Harrison J., Lewis M., Hughes J., Neill S.J. Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis // Plant Physiology and Biochemistry. 2005. Vol. 43, № 9. PP. 828-835. https://doi.org/10.1016/j.plaphy.2005.07.012
Whiteman M., Li L., Kostetski I., Chu S.H., Siau J.L., Bhatia M., Moore P.K. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide // Biochemical and Biophysical Research Communications. 2006. Vol. 343, № 1. PP. 303-310. https://doi.org/10.1016/j.bbrc.2006.02.154
Carballal S., Trujillo M., Cuevasanta E., Bartesaghi S., Moller M.N., Folkes L.K., Garc^a-Bereguiain M.A., Gutierrez-Merino C., Wardman P, Denicola A., Radi R., Alvarez B. Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest // Free Radical Biology and Medicine. 2011. Vol. 50, № 1. PP. 196-205. https://doi. org/10.1016/j.freeradbiomed.2010.10.705
Li Q., Lancaster J.R. Chemical foundations of hydrogen sulfide biology // Nitric Oxide. 2013. Vol. 35. PP. 21-34. https://doi.org/10.1016/j.niox.2013.07.001
Hancock J.T., Whiteman M. Hydrogen sulfide and cell signaling: Team player or referee? // Plant Physiology and Biochemistry. 2014. Vol. 78. PP. 37-42. https://doi.org/10.1016/j. plaphy.2014.02.012
Shan C.J., Zhang S.L., Li D.F., Zhao Y.Z., Tian X.L., Zhao X.L., Wu Y.X., Wei X.Y., Liu R.Q. Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress // Acta Physiologiae Plantarum. 2011. Vol. 33. PP. 2533-2540. https://doi.org/10.1007/s11738-011-0746-4
Li Z.G., Yi X.Y., Li Y.T. Effect of pretreatment with hydrogen sulfide donor sodium hydrosulfide on heat tolerance in relation to antioxidant system in maize (Zea mays) seedlings // Biologia. 2014. Vol. 69, № 8. PP. 1001-1009. https://doi.org/10.2478/s11756-014-0396-2
Ma Y., Zhang W., Niu J., Ren Y., Zhang F. Hydrogen sulfide may function downstream of hydrogen peroxide in salt stress-induced stomatal closure in Vicia faba // Functional Plant Biology. 2019. Vol. 46, № 2. PP. 136-145. https://doi.org/10.1071/FP18096
Wang L., Hou Z., Hou L., Zhao F., Liu X. H2S induced by H2O2 mediates drought-induced stomatal closure in Arabidopsis thaliana // Chinese Bulletin of Botany. 2012. Vol. 47, № 3. PP. 217-225.
Kolupaev Yu.E., Firsova E.N., Yastreb Т.О. Induction of plant cells heat resistance by hydrogen sulfide donor is mediated by H2O2 generation with participation of NADPH oxidase and superoxide dismutase // The Ukrainian Biochemical Journal. 2017. Vol. 89, № 4. PP 34-42. doi: https://doi.org/10.15407/ubj89.04.034
Shan C., Zhang S., Ou X. The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress // Protoplasma. 2018. Vol. 255, № 4. PP. 1257-1262. https://doi.org/10.1007/s00709-018-1213-5
Колупаев Ю.Е., Фирсова Е.Н., Ястреб Т.О., Луговая А.А. Участие ионов кальция и активных форм кислорода в индуцировании антиоксидантных ферментов и теплоустойчивости растительных клеток донором сероводорода // Прикладная биохимия и микробиология. 2017. Т. 53, № 5. С. 502-509
Liu Z., Li Y, Cao C.,∙Liang S., Ma Y.,∙Liu X., Pei Y The role of H2S in low temperature-induced cucurbitacin C increases in cucumber // Plant Molecular Biology. 2019. Vol. 99, № 6. PP. 535-544. https://doi.org/10.1007/s11103-019-00834-w
Cuevasanata E., Lange M., Bonanata J., Coitino E.L., Ferrer-Sueta G., Filipovic M.R., Alvarez B. Reaction of hydrogen sulphide with disulfide and sulfenic acid to form the strongly nucleophilic persulfide // The Journal of Biological Chemistry. 2015. Vol. 290, № 45. PP. 26866-26880. doi: 10.1074/jbc.M115.672816
Колупаев Ю.Е., Карпец Ю.В., Кабашникова Л.Ф. Антиоксидантная система растений: клеточная компартментация, защитные и сигнальные функции, механизмы регуляции (обзор) // Прикладная биохимия и микробиология. 2019. Т. 55, № 5. С. 419-440.
Gruhlke M.C. Reactive Sulfur Species A New Player in Plant Physiology? // Reactive Oxygen, Nitrogen and Sulfur Species in Plants: Production, Metabolism, Signaling and Defense Mechanisms / eds Hasanuzzaman M. et al. John Wiley & Sons Ltd., 2019. Vol. 2. PP. 715-728.
Hancock J.T. Hydrogen sulfide and environmental stresses // Environmental and Experimental Botany. 2019. Vol. 161. PP. 50-56. https://doi.org/10.1016/j.envexpbot.2018.08.034
Lisjak M., Teklic T., Wilson I.D. Whiteman M., Hancock J.T. Hydrogen sulfide: environmental factor or signalling molecule? // Plant Cell & Environment. 2013. Vol. 36, № 9. PP. 1607-1616. https://doi.org/10.1111/pce.12073
Zhang H. Hydrogen Sulfide in Plant Biology // Signaling and Communication in Plants. Lamattina L and Garcia-Mata C., editors. Vol. Gasotransmitters in Plants. The Rise of a New Paradigm in Cell Signaling. Baluska F., series editor. Switzerland : Springer International Publishing, 2016. РР. 23-51.
Wirtz M., Hell R. Functional analysis of the cysteine synthase protein complex from plants: structural, biochemical and regulatory properties // Journal of Plant Physiology. 2006. Vol. 163, № 3. PP. 273-286. https://doi.org/10.1016/j.jplph.2005.11.013
Li Z.G. Chapter thirteen - Analysis of some enzymes activities of hydrogen sulfide metabolism in plants // Methods Enzymology. 2015. Vol. 555. PP. 253-269. https://doi. org/10.1016/bs.mie.2014.11.035
Guo H., Xiao T., Zhou H., Xie Y., Shen W. Hydrogen sulfide: a versatile regulator of environmental stress in plants // Acta Physiologiae Plantarum. 2016. Vol. 38. Р. 16. https:// doi.org/10.1007/s11738-015-2038-x
Romero L.C., Garcia I., Gotor C. L-cysteine desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol // Plant Signaling & Behavior. 2013. Vol. 8, № 5. PP. 4621-4634. https://doi.org/10.4161/psb.24007
Riemenschneider A., Wegele R., Schmidt A., Papenbrock J. Isolation and characterization of a D-cysteine desulfhydrase protein from Arabidopsis thaliana // The FEBS Journal. 2005. Vol. 272, № 5. PP. 1291-1304. https://doi.org/10.1111/j.1742-4658.2005.04567.x
Banerjee A., Tripathi D.K., Roychoudhury A. Hydrogen sulphide trapeze: environmental stress amelioration and phytohormone crosstalk // Plant Physiology and Biochemistry. 2018. Vol. 132. PP. 46-53. https://doi.org/10.1016/j.plaphy.2018.08.028
Shi H., Ye T., Han N., Bian H., Liu X., Chan Z. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis // Journal of Integrative Plant Biology. 2015. Vol. 57, № 7. PP. 628-640. https://doi.org/10.1111/jipb.12302
Ziogas V., Molassiotis A., Fotopoulos V., Tanou G. Hydrogen sulfide: A potent tool in postharvest fruit biology and possible mechanism of action // Frontiers in Plant Science. 2018. Vol. 9. Р. 1375. https://doi.org/10.3389/fpls.2018.01375
Li Z.-G., Gong M., Liu P. Hydrogen sulfide is a mediator in H2O2-induced seed germination in Jatropha curcas // Acta Physiologiae Plantarum. 2012. Vol. 34, № 6. PP. 2207-2213. https://doi.org/10.1007/s11738-012-1021-z
Zhang H., Hu S.-L., Zhang Z.-J., Hu L.-Y., Jiang C.-X., Wei Z.-J., Liu J., Wang H.-L., Jiang S.-T. Hydrogen sulfide acts as a regulator of flower senescence in plants // Postharvest Biology and Technology. 2011. Vol. 60, № 3. PP. 251-257. https://doi.org/10.1016/j. postharvbio.2011.01.006
Li Z.-G., Min X., Zhou Z.-H. Hydrogen sulfide: A signal molecule in plant crossadaptation // Frontiers in Plant Science. 2016. Vol. 7, № 1621. https://doi.org/10.3389/ fpls.2016.01621
Li H., Li M., Wei X., Zhang X., Xue R., Zhao Y., Zhao H. Transcriptome analysis of droughtresponsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves // Molecular Genetics and Genomics. 2017. Vol. 292, № 5. PP. 1091-1110. https://doi. org/10.1007/s00438-017-1330-4
Li Z.G. Hydrogen sulfide: a multifunctional gaseous molecule in plants // Russian J Plant Physiology. 2013. Vol. 60, № 6. PP. 733-740. https://doi.org/10.1134/S1021443713060058
Rennenberg H. The fate excess of sulfur in higher plants // Annual Review of Plant Physiology. 1984. Vol. 35. PP. 121-153.
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed // Physiological Reviews. 2012. Vol. 92, № 2. PP. 791-896. https://doi.org/10.1152/ physrev.00017.2011
Сукманский О.И, Реутов В.П. Газотрансмиттеры: физиологическая роль и участие в патогенезе заболеваний // Успехи физиологических наук. 2016. Т. 47, № 3. С. 30-58.
Singh S., Kumar V., Kapoor D., Kumar S., Singh S., Dhanjal D.S., Datta S., Samuel J., Dey P., Wang S., Prasad R., Singh J. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions // Physiologia Plantarum. 2019. https://doi.org/10.1111/ppl.13002
Yamasaki H., Cohen M.F. Biological consilience of hydrogen sulfide and nitric oxide in plants: Gases of primordial earth linking plant, microbial and animal physiologies // Nitric Oxide. 2016. Vol. 55-56. PP. 91-100. https://doi.org/10.1016/j.niox.2016.04.002
He H., He L. The role of carbon monoxide signaling in the responses of plants to abiotic stresses // Nitric Oxide. 2014. Vol. 42. PP. 40-43. https://doi.org/10.1016/j.niox.2014.08.011
Li L., Whiteman M., Guan Y.Y., Neo K.L., Cheng Y., Lee S.W., Zhao Y., Baskar R., Tan C.H., Moore P.K. Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide // Circulation. 2008. Vol. 117. PP. 2351-2360. https://doi.org/10.1161/CIRCULATIONAHA.107.753467
Fox B., Schantz J.T., Haigh R., Wood M.E., Moore P.K., Viner N., Spencer J.P, Winyard P.G.,Whiteman M. Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? // Journal of Cellular and Molecular Medicine. 2012. Vol. 16, № 4. PP. 896-910. https://doi.org/10.1111/ j.1582-4934.2011.01357.x
Lisjak M., Srivastava N., Teklic T., Civale L., Lewandowski K.,Wilson I., Wood M.E., Whiteman M., Hancock J.T. A novel hydrogen sulphide donor causes stomatal opening and reduces nitric oxide accumulation // Plant Physiology and Biochemistry. 2010. Vol. 48, № 12. PP. 931-935. https://doi.org/10.1016/j.plaphy.2010.09.016
Christou A., Manganaris G.A., Papadopoulos I., Fotopoulos V. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways // Journal of Experimental Botany. 2013. Vol. 64, № 7. PP. 1953-1966. https://doi.org/10.1093/jxb/ert055
Shi H., Ye T., Chan Z. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.) // Plant Physiology and Biochemistry. 2014. Vol. 74. PP. 99-107. https://doi.org/10.1016/j.plaphy.2013.11.001
Shi H., Ye T., Chan Z. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L.). Pers.) // Plant Physiology and Biochemistry. 2013. Vol. 71. PP. 226-234. https://doi.org/10.1016/j. plaphy.2013.07.021
Колупаев Ю.Е., Горелова Е.И., Ястреб Т.О., Рябчун Н.И., Кириченко В.В. Стресс-протекторные реакции проростков пшеницы и ржи при индуцировании устойчивости к низким температурам донором сероводорода // Физиология растений. 2019. Т. 66, № 4. С. 277-285.
Kolupaev Yu.E., Horielova E.I., Yastreb T.O., Popov Yu.V., Ryabchun N.I. Phenylalanine ammonialyase activity and content of flavonoid compounds in wheat seedlings at the action of hypothermia and hydrogen sulfide donor // The Ukrainian Biochemical Journal. 2018. Vol. 90, № 6. PP. 12-20. https://doi.org/10.15407/ubj90.06.012
Чжан Ш., Ван М.И., Ху Л.Я., Ван С.Ш., Ху К.Д., Бао Л.И., Ло И.П. Сероводород стимулирует прорастание семян пшеницы при осмотическом стрессе // Физиология растений. 2010. Т. 57, № 4. С. 571-579.
Колупаев Ю.Е., Фирсова Е.Н., Ястреб Т.О., Рябчун Н.И., Кириченко В.В. Влияние донора сероводорода на состояние антиоксидантной системы и устойчивость растений пшеницы к почвенной засухе // Физиология растений. 2019. Т. 66, № 1. С. 26-34.
Chen J., Shang Y.T., Wang W.H., Chen X.Y., He E.M., Zheng H.L., Shangguan Z. Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings // Frontiers in Plant Science. 2016. Vol. 7. Р. 1173. https://doi.org/10.3389/fpls.2016.01173
Ye S.C., Hu L.Y., Hu K.D., Li Y.-H., Yan H., Zhang XQ, Zhang H. Hydrogen sulfide stimulates wheat grain germination and counteracts the effect of oxidative damage caused by salinity stress // Cereal Research Communications. 2015. Vol. 43, № 2. PP. 213-224. https://doi.org/10.1556/CRC.2014.0037
Kharbech O., Houmani H., Chaoui A., Corpas F.J. Alleviation of Cr(VI)-induced oxidative stress in maize (Zea mays L.) seedlings by NO and H2S donors through differential organdependent regulation of ROS and NADPH-recycling metabolisms // Journal of Plant Physiology. 2017. Vol. 219. PP. 71-80. https://doi.org/10.1016/j.jplph.2017.09.010
Синькевич М.С., Дерябин А.Н., Трунова Т.И. Особенности окислительного стресса у растений картофеля с измененным углеводным метаболизмом // Физиология растений. 2009. Т. 56, № 2. С. 186-192.
Шевякова Н.И., Бакулина Е.А., Кузнецов Вл.В. Антиоксидантная роль пролина у галофита хрустальной травки при действии засоления и параквата, инициирующих окислительный стресс // Физиология растений. 2009. Т. 56, № 5. С. 736-742.
Luo Z., Li D., Du R., Mou W. Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content // Scientia Horticulturae. 2015. Vol. 183. PP. 144-151. https://doi.org/10.1016/j.scienta.2014.12.021
Khlestkina E.K. The adaptive role of flavonoids: emphasis on cereals // Cereal Research Communications. 2013. Vol. 41. PP. 185-198. https://doi.org/10.1556/CRC.2013.0004
da-Silva C.J., Modolo L.V. Hydrogen sulfide: a new endogenous player in an old mechanism of plant tolerance to high salinity // Acta Botanica Brasilica. 2018. Vol. 32. PP. 150-160. http://dx.doi.org/10.1590/0102-33062017abb0229
Huang Z.-Q., Shao-Can Y.L. Hu L.-Y., Hu D. Hydrogen sulfide promotes wheat grain germination under cadmium stress // Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2016. Vol. 86, № 4. PP. 887-895. https://doi. org/10.1007/s40011-015-0554-5
Jin Z., Wang Z., Ma Q., Sun L., Zhang L., Liu Z., Liu D., Hao X., Pei Y. Hydrogen sulfide mediates ion fluxes inducing stomatal closure in response to drought stress in Arabidopsis thaliana // Plant and Soil. 2017. Vol. 419, № 1-2. PP. 141-152. https://doi.org/10.1007/ s11104-017-3335-5
Scuffi D., Nietzel T., Di Fino L.M., Meyer A.J., Lamattina L., Schwarzlander M., Laxalt A.M., Garcia-Mata C. Hydrogen sulfide increases production of NADPH oxidasedependent hydrogen peroxide and phospholipase D-derived phosphatidic acid in guard cell signaling // Plant Physiology. 2018. Vol. 176, № 3. PP. 2532-2542. https://doi.org/10.1104/ pp.17.01636
Lisjak M., Teklic T., Wilson I.D., Wood M.E., Whiteman M., Hancock J.T. Hydrogen sulfide effects on stomatal apertures // Plant Signaling & Behavior. 2011. Vol. 6, № 10. PP. 1444-1446. https://doi.org/10.4161/psb.6.10.17104
Honda K., Yamada N., Yoshida R., Ihara H., Sawa T., Akaike T., Iwai S. 8-Mercapto-Cyclic GMP mediates hydrogen sulfide-induced stomatal closure in Arabidopsis // Plant Cell Physiol. 2015. Vol. 56, № 8. PP. 1481-1489. https://doi.org/10.1093/pcp/pcv069
Wang L., Ma X., Che Y., Hou L., Liu X., Zhang W. Extracellular ATP mediates H2S-regulated stomatal movements and guard cell K+ current in a H2O2-dependent manner in Arabidopsis // Science Bulletin. 2015. Vol. 60, № 4. PP. 419-427. https://doi.org/10.1007/ s11434-014-0659-x
Yastreb T.O., Kolupaev Yu.E., Havva E.N., Shkliarevskyi M.A., Dmitriev A.P. Calcium and components of lipid signaling in implementation of hydrogen sulfide influence on state of stomata in Arabidopsis thaliana // Cytology and Genetics. 2019. Vol. 53, № 2. PP. 99-105. https://doi.org/10.3103/S0095452719020099
Corpas F.J., Gonzalez-Gordo S., Canas A., Palma J.M. Nitric oxide (NO) and hydrogen sulfide (H2S) in plants: Which is first? // Journal of Experimental Botany. 2019. Vol. 70, № 17. PP. 24391-4404. https://doi.org/10.1093/jxb/erz031
Li Z.G., Luo L.J., Sun Y.F. Signal crosstalk between nitric oxide and hydrogen sulfide may be involved in hydrogen peroxide induced thermotolerance in maize seedlings // Russian Journal of Plant Physiology. 2015. Vol. 62, № 4. PP. 507-514. https://doi.org/10.1134/ S1021443715030127
Kolupaev Yu.E., Karpets Yu.V., Yastreb Т.О. Induction of wheat plant resistance to stressors by donors of nitric oxide and hydrogen sulfide // Wheat Production in Changing Environments, eds. Hasanuzzaman M. et al. Singapore : Springer Nature Pte Ltd., 2019. PP. 521-556. https://doi.org/10.1007/978-981-13-6883-7_21
Aghdam M.S., Mahmoudi R., Razavi F., Rabiei V., Soleimani A. Hydrogen sulfide treatment confers chilling tolerance in hawthorn fruit during cold storage by triggering endogenous H2S accumulation, enhancing antioxidant enzymes activity and promoting phenols accumulation // Scientia Horticulturae. 2018. Vol. 238. PP. 264-271. https://doi. org/10.1016/j.scienta.2018.04.063
 Hydrogen sulfide and plant adaptation to abiotic stressors | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2019. №  48. DOI: 10.17223/19988591/48/8

Hydrogen sulfide and plant adaptation to abiotic stressors | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2019. № 48. DOI: 10.17223/19988591/48/8

Download full-text version
Counter downloads: 1155