Abies sibirica Ledeb. fine root respiration in the bilberry-sphagnum pine forest in the middle taiga
A recent interest in the study of physiological and biochemical processes in the underground organs of woody plants is due, first of all, to the assessment of their contribution to the carbon balance of forest ecosystems. Root respiration provides a significant part of the total СО2 emission from the soil surface. Abies sibirica Ledeb. has a branched, but not deep, root system and prefers a certain soil fertility and moisture. This tree species does not grow on the permafrost grounds unlike Picea obovata Ledeb. and Pinus sylvestris L. Numerous literature sources describe various methods for measuring CO2 in fine roots, from laboratory measurements to calculating the proportion of root respiration in the total СО2 emission from soil. Our study is based on the original data on the respiration of non-cut roots of A. sibirica in the litter with the minimal damage of the object and environment. The aim of this research is to characterize the seasonal and daily dynamics of fine root respiration rate in A. sibirica in the bilberry-sphagnum pine forest in the middle taiga for two growing seasons. Measurements were performed from May to October in 2016 and 2018 during the vegetation periods in the bilberry-sphagnum pine forest in the middle taiga (N 62°17' E 50°40') of the 5th class of bonitet, stand composition was 9Po1Bp+Ps+As, tree age was 106-200 years, with soil as peaty-podzolic-gleyic, sandy loam, underlied by loams (Histic Albic Retisol). Weather conditions, litter temperature and moisture are presented in Table 1. Respiration of fine mycorrhizal roots (less than 2 mm in diameter) was measured in mature trees by infrared gas analyzer “Li 6400” (Li-Cor, USA) and soil camera during different times of the day in a stream of atmospheric air. Statistical data processing was performed using Microsoft Excel 2003, and STATISTICA 10. Average values of fir fine root respiration differed significantly in 2016 and 2018 and were 0.79±0.01 mg СО2 g4h4 and 0.58±0.01 mg СО2 g4h4 (Student’s t-test). In 2016, respiration rate was higher in August and lower in September (See Table 2 and Table 3). In August, an increase in respiration rate was found only at noon and in the afternoon. In July, respiration rate was higher during morning and evening hours. In September, respiration rate was low during all day compared to other months. The lowest values of root СО2 emission were found in September. In 2018, respiration was high in July and low in August-September. The lowest values of СО2 emission were found in the beginning of June. July increase and September decrease in respiration rate occurred evenly in each measurement interval during the day. Thus, in July, we found higher daily fine roots’ СО2 emission compared to other months. In 2016, the daily dynamics demonstrated an increase in root respiration during summer afternoons and its decrease during autumn afternoons followed by an evening increase in respiration. In 2018, summer root respiration increased in the noon and then decreased sharply in the afternoon and evening. The opposite trend was observed in September. We found a positive correlation of fir fine root respiration rate and temperature (See Table 4). The direction of moisture influence on root respiration was different. Fine root respiration rate was correlated positively with camera moisture and negatively with soil moisture. In 2018, the dependence was much stronger than in 2016. Therefore, A. sibirica fine root respiration was different during two years of observation in the bilberry-sphagnum spruce forest and correlated positively with the litter temperature, and negatively with the litter moisture. The seasonal dynamics showed an increased СО2 emission in July and August. The daily dynamics of the respiration rate was different during different vegetation periods, but, in general, the respiration rate was lower during the afternoon hours. The paper contains 4 Tables and 43 References.
Keywords
суточная и сезонная динамика,
температура почвы,
влажность почвы,
Республика Коми,
daily and seasonal dynamics,
soil temperature,
soil moisture,
Komi RepublicAuthors
Sizonenko Tatyana A. | Komi Science Centre, Ural Branch of the Russian Academy of Sciences | tvor.83@mail.ru |
Всего: 1
References
Yu S., Chen Y, Jie Z., Fu S., Li Z., Xia H., Zhou L. Temperature sensitivity of total soil respiration and its heterotrophic and autotrophic components in six vegetation types of subtropical China // Science of The Total Environ. 2017. Vol. 607-608. PP. 160-167. doi: 10.1016/j.scitotenv.2017.06.194
Hopkins F., Gonzalez-Meler M.A., Flower C.E., Lynch D.J., Czimczik C., Tang J., Subke J.-A. Ecosystem-level controls on root-rhizosphere respiration // New Phytologist. 2013. Vol. 199. PP. 339-351. doi: 10.1111/nph.12271
Atkin O.K., Tjoelker M.G. Thermal acclimation and the dynamic response of plant respiration to temperature // Trends in Plant Science. 2003. Vol. 8. PP. 343-351. doi: 10.1016/S1360-1385(03)00136-5
Hasselquist N.J., Vargos R., Allen M.F. Using soil sensing technology to examine interactions and controls between ectomycorrhizal growth and environmental factors on soil CO2 dynamics // Plant and Soil. 2010. Vol. 331. PP. 17-29. doi: 10.1007/s11104-009-0183-y
Treseder K.K., Allen M.F. Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition // New Phytologist. 2000. Vol. 147. PP. 189200. doi: 10.1046/j.1469-8137.2000.00690.x
Загирова С.В. Структура, содержание пигментов и фотосинтез хвои лиственницы сибирской на Северном и Приполярном Урале // Лесоведение. 2014. № 3. С. 3-10.
Kutsch W.L., Staack A., Wotzel J., Middelhoff U., Kappen L. Field measurements of root respiration and total soil respiration in an alder forest // New Phytologist. 2001. Vol. 150. PP. 157-168. doi: 10.1046/j.1469-8137.2001.00071.x
Clinton B.D., Vose J.M. Fine root respiration in mature eastern white pine (Pirns strobus) in situ: the importance of CO2 in controlled environments // Tree Physiology. 1999. Vol. 19. PP. 475-479.
Коновалов В.Н., Зарубина Л.В. Эколого-физиологические особенности хвойных на удобренных почвах. Архангельск : АГТУ, 2011. 338 с.
Веретенников А.В., Кузьмин Ю.И. Транспорт, распределение и потребление 14С-ассимилятов у сосны обыкновенной при различном водном режиме торфяной почвы // Лесоведение. 1977. № 3. С. 34-41.
Ryan M.G., Lavigne M.B. Gower ST. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate // Journal of Geophysical Research. 1997. Vol. 102. PP. 28.871-28.883. doi: 10.1029/97JD01236
Веретенников А.В. Влияние временного избыточного увлажнения на физиологические процессы древесных растений. М. : Наука, 1964. 87 с.
Bhupinderpal-Singh N.A., Lofvenius M.O., Hogberg M.N., Mellander P.E., Hogberg P. Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year // Plant Cell and Environment. 2003. Vol. 26. PP. 1287-1296. doi: 10.1046/j.1365-3040.2003.01053.x
Загирова С.В. Структура ассимиляционного аппарата и СО2-газообмен у хвойных. Екатеринбург : УрО РАН, 1999. 108 с.
Бобкова К.С. Биологическая продуктивность хвойных лесов европейского Северо-Востока. Л. : Наука, 1987. 156 с.
Tvorozhnikova T.A., Zagirova S.V., Punegov V.V. Seasonal growth dynamics of Siberian spruce ectomycorrhiza and sugar content in it // Russian Journal of Plant Physiology. 2009. Vol. 56. № 1. P. 104-109. doi: 10.1134/S1021443709010154
Коренные еловые леса Севера: биоразнообразие, структура, функции / отв. ред. К.С. Бобкова, Э.П. Галенко. СПб. : Наука, 2006. 337 с.
Полевой определитель почв России. М. : Почвенный институт им. В.В. Докучаева, 2008. 182 с.
Yan T., Qu T., Songc H., Suna Z., Zengb H., Penga S. Ectomycorrhizal fungi respiration quantification and drivers in three differently-aged larch plantations // Agricultural and Forest Meteorology. 2019. Vol. 265. PP. 245-251. doi: 10.1016/j.agrformet.2018.11.024
Дёгтева С.В., Дубровский Ю.А., Новаковский А.Б. Видовое и ценотическое разнообразие пихтовых лесов предгорной и горной ландшафтных зон Северного и Приполярного Урала // Растительность России. 2016. № 29. С. 3-20. doi: 10.31111/ vegrus/2016.29.3
Wang X., Wang C. Mycorrhizal associations differentiate soil respiration in five temperate monocultures in Northeast China // Forest Ecology and Management. 2018. Vol. 430. PP. 78-85. doi: 10.1016/j.foreco.2018.08.001
Матвиенко А.И., Макаров М.И., Меняйло О.В. Биологические источники почвенного СО2 под лиственницей сибирской и сосной обыкновенной // Экология. 2014. № 3. С. 182-188. doi:10.7868/S036705971403007X
Heinemeyer A., Hartley I.P, Evans S.P., Carreira J.A., Fuente D.L., Ineson P. Forest soil CO2 flux: uncovering the contribution and environmental responses of ectomycorrhizas // Global Change Biology. 2007. Vol. 13. PP 1786-1797. doi: 10.1111/j.1365-2486.2007.01383.x
Neumann J., Matzner E. Contribution of newly grown extramatrical ectomycorrhizal mycelium and fine roots to soil respiration in a young Norway spruce site // Plant and Soil. 2014. Vol. 378. PP. 73-82. doi: 10.1007/s11104-013-2018-0
Сизоненко Т.А. Сезонная динамика строения и функциональной активности эктомикоризных корней пихты сибирской // Сибирский лесной журнал. 2017. № 6. С. 110-119. doi: 10.15372/SJFS20170609
Веселкин Д.В. Соотношение объемов гриба и древесных тканей в эктомикоризных корнях хвойных // Лесоведение. 2015. № 2. С. 140-146.
Nottingham A.T., Turner B.L., Winter K., van der Heijden, M.G.A., Tanner E.V.J. Arbuscular mycorrhizal mycelial respiration in a moist tropical forest // New Phytologist. 2010. Vol. 186. PP. 957-967. doi: 10.1111/j.1469-8137.2010.03226.x
Ostonen I., Lohmus K. Proportion of fungal mantle, cortex and stele of ectomycorrhizas in Picea abies (L.) Karst. in different soils and site conditions // Plant and Soil. 2003. Vol. 257. PP. 435-442. doi: 10.1023/A:1027305906159
Makita N.,Hirano Y., Sugimoto T., Tanikawa T., Ishii H. Intraspecific variation in fine root respiration and morphology in response to in situ soil nitrogen fertility in a 100-year-old Chamaecyparis obtuse forest // Oecologia. 2015. Vol. 179. PP. 959-967. doi: 10.1007/ s00442-015-3413-4
Zogg G.P., Zak D.R., Burton A.J., Pregitzer K.S. Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability // Tree Physiology. 1996. Vol. 16. PP. 719-725. doi: 10.1093/treephys/16.8.719
Цельникер Ю.Л. Дыхание корней и его роль в углеродном балансе древостоя // Лесоведение. 2005. № 6. С. 11-18.
Sun T., Mao Z. Functional relationships between morphology and respiration of fine roots in two Chinese temperate tree species // Plant and Soil. 2011. Vol. 346. PP. 375-384. doi: 10.1007/s11104-011-0825-8
Зарубина Л.В., Коновалов В.Н. Влияние прореживания и азота на сезонную динамику дыхания корней сосны и ели // ИВУЗ. Лесной журнал. 2016. № 1. С. 100-114. doi: 10.17238/issn0536-1036.2016.1.100
Семихатова О.А., Чиркова Т.В. Физиология дыхания растений : учеб. пособие. СПб. : Изд-во СПб. ун-та, 2001. 224 с.
Зарубина Л.В., Коновалов В.Н., Феклистов П.А., Клевцов Д.Н. Динамика дыхания корней сосны и ели в северотаежных фитоценозах // Вестник Северного (Арктического) федерального университета. Серия: Естественные науки. 2014. № 2. С. 52-60.
Wang B., Zha T.S., Jia X., Wu B., Zhang Y.Q., Qin S.G. Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem // Biogeosciences. 2014. Vol. 11. PP. 259-268. doi: 10.5194/bg-11-259-2014
Molchanov A.G. Effect of moisture availability on photosynthetic productivity and autotrophic respiration of an oak stand //Russian Journal of Plant Physiology. 2009. Vol. 56. № 6. PP. 769-779. doi: 10.1134/S1021443709060065
Davidson E.A., Janssens I.A., Luo Y.Q. On the variability of respiration in terrestrial ecosystems: moving beyond Q10 // Global Change Biology. 2006. Vol. 12. PP. 154-164. doi: 10.1111/j.1365-2486.2005.01065.x
Сизоненко Т.А. Дыхательная активность эктомикориз ели сибирской и сосны обыкновенной в средней тайге // Лесоведение. 2017. № 3. С. 196-204.
Bobkova K.S., Tuzhilkina V.V. Carbon concentrations and caloric value of organic matter in northern forest ecosystems // Russian Journal of Ecology. 2001. Vol. 32. № 1. PP. 63-65. doi: 10.1023/A:1009582318434
Kadulin M.S., Smirnova I.E., Koptsyk G.N. The emission of carbon dioxide from soils of the Pasvik nature reserve in the Kola Subarctic // Eurasian Soil Science. 2017. Vol. 50, № 9. PP. 1055-1068. doi: 10.7868/S0032180X17090039
Евдокимов И.В., Ларионова А.А., Шмитт М., Лопес де Гереню В.О., Бан М. Экспериментальная оценка вклада дыхания корней растений в эмиссию углекислого газа из почвы // Почвоведение. 2010. № 12. C. 1479-1488.
Clemmensen K.E., Bahr A., Ovaskainen O., Dahlberg A., Ekblad A., Wallander H., Stenlid J., Finlav R.D., Wardle D.A., Lindahl B.D. Roots and associated fungi drive longterm carbon sequestration in boreal forest // Science. 2013. Vol. 339. PP. 1615-1618. doi: 10.1126/science.1231923