Calcium-dependent changes in the activity of antioxidant enzymes and heat resistance of wheat seedlings under the influence of exogenous putrescine
Polyamines are important stress plant metabolites involved in the regulation of redox homeostasis and other signaling processes. Polyamines can affect redox homeostasis by binding free radicals and participating in the regulation of gene expression of antioxidant enzymes. However, their metabolism produces hydrogen peroxide and other reactive oxygen species (ROS). A separate component of the physiological activity of polyamines may be their effect on the state of ion channels. It is known that there are complex bonds between ROS and calcium ions as signal mediators. However, the functional interaction between ROS and calcium ions in the implementation of the effects of polyamines on plant cells has been studied very poorly. Moreover, the question of the role of such interactions in the realization of stress-protective effects of polyamines remains open. The aim of this research was to study the inhibitory methods of the involvement of different pools of calcium in the regulation of the formation of hydrogen peroxide, the activity of antioxidant enzymes and inducing putrescine thermostability of wheat seedlings. The object of the study was etiolated seedlings of soft winter wheat (Triticum aestivum L.) of Doskonala variety. Three-day-old seedlings were treated with putrescine at a concentration of 1 mM. In certain experimental variants, the seedlings were treated with calcium antagonists - EGTA (Ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid - extracellular Ca2+ chelator) and neomycin - an inhibitor of phospholipase C-dependent calcium intake into the cytosol from intracellular compartments, as well as with the indicated inhibitors in combination with putrescine. In the roots of seedlings some time after treatment with test compounds, we determined hydrogen peroxide content and the activity of antioxidant enzymes. One day after seedling treatment with putrescine, calcium antagonists and a combination of effectors, the seedlings were subjected to damaging heating in a water thermostat (10 min at 45 °C). 5 hours after heating, we assessed damage to the root cell membranes by the yield of compounds absorbing in the UV-B, as well as the activity of antioxidant enzymes. 2 hours after the start of root treatment with putrescine, we noted a significant increase in the content of hydrogen peroxide in them (See Fig. 1). This effect was eliminated by treatment with EGTA, but not with neomycin. The treatment of seedlings with putrescine caused a change in the activity of all three studied antioxidant enzymes in roots (superoxide dismutase - SOD, catalase, and guaiacol peroxidase) (See Table). The increased activity of these enzymes in the roots of seedlings treated with putrescine was also observed after damaging heating. The calcium ion chelator completely eliminated the putrescine-induced effect of increasing the activity of all three studied enzymes (See Fig. 2). Neomycin almost did not affect the manifestation of the effect of increasing the activity of SOD, however, it neutralized the increase in the activity of catalase and guaiacol peroxidase caused by putrescine. The effect of heat stress on the seedlings caused an increase in the yield of substances absorbing in the UV from the root cells. Treatment with putrescine helped preserve the integrity of biomembranes. Calcium antagonists EGTA and neomycin leveled off the effect of reducing the yield of substances absorbing in the UV-B caused by putrescine (See Fig. 3). They also almost completely eliminated the putrescine-induced increase in survival of seedlings after stress. We can conclude that the induction of heat resistance of wheat seedlings by putrescine depends on the functional interaction between calcium ions and ROS as signaling agents. The activation process of the enzymatic antioxidant system, necessary for the formation of heat resistance of plants, depends on the formation of ROS, which occurs with the participation of diamine oxidase and NADPH oxidase. At the same time, the accumulation of the signal pool of hydrogen peroxide is dependent on the influx of calcium into cytosol from extracellular space. The further activation process of the antioxidant enzyme complex under the influence of putrescine treatment also depends on the influx of calcium into cytosol, not only from extracellular space, but also from intracellular compartments. The paper contains 3 Figures, 1 Table and 34 References. The Authors declare no conflict of interest.
Keywords
Triticum aestivum,
полиамины,
путресцин,
редокс- гомеостаз,
кальций,
теплоустойчивость,
Triticum aestivum,
polyamines,
putrescine,
redox homeostasis,
calcium,
heat resistanceAuthors
Kolupaev Yuriy E. | Dokuchaev Kharkiv National Agrarian University; Karazin Kharkiv National University | plant.biology.knau@gmail.com |
Kokorev Alexandr I. | Dokuchaev Kharkiv National Agrarian University | plant.biology.knau@gmail.com |
Shkliarevskyi Maxim A. | Dokuchaev Kharkiv National Agrarian University | plant.biology.knau@gmail.com |
Всего: 3
References
Gill S.S., Tuteja N. Polyamines and abiotic stress tolerance in plants // Plant Signaling Behavior. 2010. Vol. 5, № 1. PP. 26-33. https://doi.Org/10.4161/psb.5.1.10291
Кузнецов Вл.В., Радюкина Н.Л., Шевякова Н.И. Полиамины при стрессе: биологическая роль, метаболизм и регуляция // Физиология растений. 2006. Т. 53, № 5. С. 658-683.
Szalai G., Pap M., Janda T. Light-induced frost tolerance differs in winter and spring wheat plants // Journal Plant Physiology. 2009. Vol. 166. PP. 1826-1831. https://doi.org/10.1016/). jplph.2009.04.016
Alcazar R., Altabella T., Marco F., Bortolotti C., Reymond M., Koncz C., Carrasco P., Tiburcio A.F. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance // Planta. 2010. Vol. 231, № 6. PP. 1237-1249. https://doi.org/10.1007/s00425-010-1130-0
Campestre M.P., Bordenave C.D., Origone A.C., Menendez A.B., Ruiz O.A., Rodriguez A.A., Maiale S.J. Polyamine catabolism is involved in response to salt stress in soybean hypocotyls // Journal Plant Physiology. 2011. Vol. 168. PP. 1234-1240. https://doi. org/10.1016/j.jplph.2011.01.007
Kuznetsov Vl.V., Shevyakova N.I. Polyamines and plant adaptation to saline environment // Desert Plants. Biology and Biotechnology, ed. Ramawat K.B. Berlin, Heidelberg: Springer, 2011. PP. 261-297. https://doi.org/10.1007/978-3-642-02550-1_13
Pal M., Szalai G., Janda T. Speculation: Polyamines are important in abiotic stress signaling // Plant Science. 2015. Vol. 237. PP. 16-23. https://doi.org/10.1016/j.plantsci.2015.05.003
Ha H.C., Sirisoma N.S., Kuppusamy P., Zweier J.L., Woster P.M., Casero R.A.Jr. The natural polyamine spermine functions directly as a free radical scavenger // Proceedings of the National Academy of Sciences USA. 1998. Vol. 95, № 19. PP. 11140-11145. https://doi. org/10.1073/pnas.95.19.11140
Tanou G., Ziogas V, Belghazi M., Christou A., Filippou P., Job D., Fotopoulos V, Molassiotis A. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress // Plant, Cell & Environment. 2014. Vol. 37, № 4. PP. 864-885. https://doi.org/10.1111/pce.12204
Dobrovinskaya O.R., Muniz J., Pottosin I. Inhibition of vacuolar ion channels by polyamines // The Journal of Membrane Biology. 1999. Vol. 167. PP. 127-140. https://doi.org/10.1007/ s002329900477
Pottosin I., Shabala S. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling // Frontiers in Plant Science. 2014. Vol. 5, Art. 154. https://doi.org/10.3389/fpls.2014.00154
Bose J., Pottosin I.I., Shabala S.S., Palmgren M.G., Shabala S. Calcium efflux systems in stress signaling and adaptation in plants // Frontiers in Plant Science. 2011. Vol. 2, Art. 85. https://doi.org/10.3389/fpls.2011.00085
Колупаев Ю.Е., Карпец Ю.В. Активные формы кислорода и стрессовый сигналинг у растений // The Ukrainian Biochemical Journal. 2014. Vol. 86, № 4. PP. 18-35. http:// dx.doi.org/10.15407/ubj86.04.018
Mori I.C., Schroeder J.S. Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction // Plant Physiology. 2004. Vol. 135. PP. 702-708. https://doi.org/10.1104/pp.104.042069
Sagi M., Fluhr R. Production of reactive oxygen pecies by plant NADPH oxidases // Plant Physiology. 2006. Vol. 141. PP. 336-340. https://doi.org/10.1104/pp.106.078089
Demidchik V, Maathuis F.J.M. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development // New Phytologist. 2007. Vol. 175. PP. 387-404. https://doi.org/10.1111/j.1469-8137.2007.02128.x
Oda T., Hashimoto H., Kuwabara N., Akashi S., Hayashi K., Kojima C., Wong H.L., Kawasaki T., Shimamoto K., Sato M., Shimizu T. Structure of the N-terminal regulatory domain of a plant NADPH oxidase and its functional implications // The Journal of Biological Chemistry. 2010. Vol. 285. PP. 1435-1445. https://doi.org/10.1074/jbc.M109.058909
Karpets Yu.V, Kolupaev Yu.E., Yastreb T.O., and Dmitriev O.P. Possible pathways of heat resistance induction in plant cells by exogenous nitrogen oxide // Cytology and Genetics. 2012. Vol. 46, № 6. PP. 354-359. https://doi.org/10.3103/S0095452712060059
Ghalati R.E., Shamili M., Homaei A. Effect of putrescine on biochemical and physiological characteristics of guava (Psidium guajava L.) seedlings under salt stress // Scientia Horticulturae. 2020. Vol. 261. Art. 108961. https://doi.org/10.1016/j.scienta.2019.108961
Asthir B., Kumar R., Bains N.S. Why and how putrescine modulates thermotolerance in wheat? // Indian Journal of Biochemistry and Biophysics. 2018. Vol. 55, № 6. PP. 404-412.
Kolupaev Yu.E., Kokorev A.I., Yastreb T.O., Horielova E.I. Hydrogen peroxide as a signal mediator at inducing heat resistance in wheat seedlings by putrescine // The Ukrainian Biochemical Journal. 2019. Vol. 91, № 6. PP. 103-111. https://doi.org/10.15407/ ubj91.06.103
Колупаев Ю.Е., Обозный А.И., Швиденко Н.В. Роль пероксида водорода в формировании сигнала, индуцирующего развитие теплоустойчивости проростков пшеницы // Физиология растений. 2013. Т. 60, № 2. С. 221-229. https://doi.org/10.7868/ S0015330313020127
Sagisaka S. The occurrence of peroxide in a perennial plant, Populus gelrica // Plant Physiology. 1976. Vol. 57, № 2. PP. 308-309. https://doi.org/10.1104/pp.57.2.308
Карпец Ю.В., Колупаев Ю.Е., Ястреб Т.О., Обозный А.И. Влияние модификации NO-статуса, закаливающего прогрева и пероксида водорода на активность антиоксидантных ферментов в проростках пшеницы // Физиология растений. 2015. Т 62, № 3. С. 317-323. https://doi.org/10.7868/S0015330315030094
Мелехов Е.И., Ефремова Л.К. Влияние экзогенных фитогормонов на устойчивость растительных клеток к нагреву и 2,4-Д // Физиология растений. 1990. Т 37, № 3. С. 561-568.
Liu H.T., Huang W.D., Pan Q.H., Weng F.H., Zhan J.C., Liu Y., Wan S.B., Liu Y.Y. Contributions of PIP2-specific-phospholipase C and free salicylic acid to heat acclimation induced thermotolerance in pea leaves // Journal of Plant Physiology. 2006. Vol. 163, № 4. PP. 405-416. https://doi.org/10.1016/jjplph.2005.04.027
Pottosin I., Velarde-Buend^a A.M., Bose J., Fuglsang A.T., Shabala S. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots // Journal of Experimental Botany. 2014. Vol. 65, № 9. PP. 2463-2472. https:// doi.org/10.1093/jxb/eru133
Piterkova J., Luhova L., Zajoncova L., Sebela M., Petrivalsky M. Modulation of polyamine catabolism in pea seedlings by calcium during salinity stress // Plant Protection Science. 2012. Vol. 48, № 2. PP. 53-64. https://doi.org/10.17221/62/2011-PPS
Guo Y., Yang R., Chen H., Song Y, Gu Z. Accumulation of y-aminobutyric acid in germinated soybean (Glycine max L.) in relation to glutamate decarboxylase and diamine oxidase activity induced by additives under hypoxia // European Food Research and Technology. 2012. Vol. 234. PP. 679-687. https://doi.org/10.1007/s00217-012-1678-y
Yang R., Chen H., Gu Z. Factors influencing diamine oxidase activity and y-aminobutyric acid content of fava bean (Vicia faba L.) during germination // Journal of Agricultural and Food Chemistry. 2011. Vol. 59. PP. 11616-11620. https://doi.org/10.1021/jf202645p
Wang K., Xu F., Cao S., Wang H., Wei Y., Shao X., Zhou W., Zheng Y. Effects of exogenous calcium chloride (CaCl2) and ascorbic acid (AsA) on the y-aminobutyric acid (GABA) metabolism in shredded carrots // Postharvest Biology and Technology. 2019. Vol. 152. PP. 111-117. https://doi.org/10.1016/j.postharvbio.2019.03.005
Шарова Е.И., Медведев С.С. Редокс-реакции в апопласте растущих клеток // Физиология растений. 2017. Т. 64, № 1. С. 3-18. https://doi.org/10.7868/ S0015330317010146
Messiaen J., Van Cutsem P. Polyamines and pectins. II. Modulation of pectic-signal transduction // Planta. 1999. Vol. 208. PP. 247-256. https://doi.org/10.1007/s004250050556
Глянько А.К., Ищенко А.А. Структурные и функциональные особенности НАДФН-оксидазы растений (обзор) // Прикладная биохимия и микробиология. 2010. Т. 46, № 5. С. 509-518.