Black carbon as a factor in deglaciation in polar and mountain ecosystems: A Review | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2020. № 52. DOI: 10.17223/19988591/52/1

Black carbon as a factor in deglaciation in polar and mountain ecosystems: A Review

Black carbon is considered a product of the incomplete combustion of fossil fuels and materials that originated from volcanic eruptions or were emitted during wildfires. It is a strong light-absorbing component that has many atmospheric and surface effects in terrestrial and glacial ecosystems. Normally, black carbon is presented as a solid particle, consisting mainly of pure carbon, which absorbs solar radiation at all wavelengths. Some black carbon particles are amended by a mineral compound, though black carbon substances are normally dark or greyish dark. Black carbon is the most active part of suspended particles in the atmosphere and on glacial surfaces, absorbing solar radiation, the main component of ash, which consists of carbon particles with impurities in the form of mineral particles and also contains carbon of biogenic origin. In this paper, we have analyzed the literature on black carbon and its effect on deglaciation processes in the Earth’s polar and mountainous regions. The physical, chemical, and microbiological composition of black carbon accumulations were studied using the examples of the Arctic, the Antarctic, and the Central Caucasus. Potential sources and conditions of the transportation of black carbon into the polar zone and their effect on ice and snow have also been discussed. The paper contains 7 Figures, 3 Tables and 110 References.

Download file
Counter downloads: 195

Keywords

Antarctic, Arctic, Central Caucasus, Climate crisis, Organic carbon

Authors

NameOrganizationE-mail
Polyakov Vyacheslav I.St. Petersburg State Universityslavon6985@gmail.com
Abakumov Evgeny V.St. Petersburg State Universitye_abakumov@mail.ru
Tembotov Rustam Kh.Tembotov Institute of Ecology of Mountain Territoriestembotov.rustam@mail.ru
Всего: 3

References

Gorlach U., Boutron C.F. Variations in heavy metals concentrations in Antarctic snows from 1940 to 1980. J Atmospheric Chemistry. 1992;14(1-4):205-222. doi: 10.1007/BF00115234
Sheppard D.S., Deely J.M., Edgerley W.H.L. Heavy metal content of meltwaters from the Ross Dependency, Antarctica. New Zealand J Marine and Freshwater Research. 1997;31(3):313-325. doi: 10.1080/00288330.1997.9516769
Lutz S., Ziolkowski L.A., Benning L.G. The biodiversity and geochemistry of cryoconite holes in Queen Maud Land, East Antarctica. Microorganisms. 2019;7:160. doi: 10.3390/ microorganisms7060160
Hong S., Boutron C.F., Edwards R., Morgan V.I. Heavy metals in Antarctic ice from Law Dome: Initial Results. Environmental Research. 1998;78(2):94-103. doi: 10.1006/ enrs.1998.3849
De Lima Neto E., Guerra M.B.B., Thomazini A., Daher M., de Andrade A.M., Schaefer C.E.G.R. Soil contamination by toxic metals near an Antarctic Refuge in Robert Island, Maritime Antarctica: A monitoring strategy. Water, Air, & Soil Pollution 2017;228(2):66. doi: 10.1007/s11270-017-3245-4
Vinogradova A.A., Kotova E.I. Assessment of heavy metal fluxes from the atmosphere to the Barents Sea. Trudy Fersmanovskoy nauchnoy sessii GIKNTS RAN2019;16:63-67. doi: 10.31241/FNS.2019.16.013 In Russian, English Summary
Santos I.R., Silva-Filho E.V., Schaefer C.E.G.R., Albuquerque-Filho M.R., Campos L.S. Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Marine Pollution Bulletin. 2005;50(2):185-194. doi: 10.1016/j. marpolbul.2004.10.009
Oen A.M.P., Cornelissen G., Breedveld G.D. Relation between PAH and black carbon content in size fractions of Norwegian harbor sediments. Environmental Pollution. 2006;141:370-380. doi: 10.1016/j.envpol.2005.08.033
Doherty S.J., Grenfell T.C., Forsstrom S. Observed vertical redistribution of black carbon and other insoluble light-absorbing particles in melting snow. J Geophysical Research: Atmospheres. 2013;118:5553-5569. doi: 10.1002/jgrd.50235
He C., Li Q.B., Liou K.N. Black carbon radiative forcing over the Tibetan Plateau. Geophysical Research Letters. 2014;41:7806-7813. doi: 10.1002/2014gl062191
Barrie L.A. Arctic air pollution: An overview of current knowledge. Atmospheric Environment. 1986;20:643-663. doi: 10.1016/0004-6981(86)90180-0
Barrie L.A. Occurrence and trends of pollution in the Arctic troposphere. In: Chemical exchange between the atmosphere and polar snow. NATO ASI Series (Series I: Global Environmental Change). Wolff E.W. and Bales R.C., editors. Berlin, Heidelberg: Springer; 1996. Vol. 43. pp. 93130. doi: 10.1007/978-3-642-61171-1 5
Ming J., Xiao C., Cachier H. Black carbon (BC) in the snow of glaciers in west China and its potential effects on albedo. Atmospheric Research. 2009;92:114-123. doi: 10.1016/j. atmosres.2008.09.007
Hansen A.D.A., Rosen H., Novakov T. The aethalometer- An instrument for the real-time measurement of optical absorption by aerosol particles. Science of the Total Environment. 1984;36:191-196. doi: 10.1016/0048-9697(84)90265-1
Doherty S., Warren S., Grenfell T., Clarke A., Brandt R. Light Absorption from Impurities in Arctic Snow. Atmospheric Chemistry and Physics. 2010;10:1647-11680. doi: 10.5194/acp-10-11647-2010
Shindell D.T., Chin M., Dentener F., Doherty R.M., Faluvegi G. and etc. A multi-model assessment of pollution transport to the Arctic. Atmospheric Chemistry and Physics. 2008;8:5353-5372. doi: 10.5194/acp-8-5353-2008
Long C.M., Nascarella M.A., Valberg P.A. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environmental Pollution. 2013;181:271-286. doi: 10.1016/j.envpol.2013.06.009
Hilden M., Kupiainen K., Forsius M., Salonen R. Curbing black carbon emissions slows warming in the Arctic. Finland: SYKE Policy Brief Publ.; 2017. 4 p.
UNEP and WMO. Integrated Assessment of Black Carbon and Tropospheric Ozone, Nairobi, Kenya. 2011. [Electronic resource]. Available at: https://www.ccacoalition.org/en/ resources/marrakech-communique (accessed 29.04.2020)
Schwarz J.P., Gao R.S., Perring A.E., Spackman J.R., Fahey D.W. Black carbon aerosol size in snow. Scientific Reports. 2013;3:1356. doi: 10.1038/srep01356
Kozachek A., Mikhalenko V., Masson-Delmotte V., Ekaykin A., Ginot P., Kutuzov S., Legrand M., Lipenkov V., Preunkert S. Large-scale drivers of Caucasus climate variability in meteorological records and Mt Elbrus ice cores. Climate of the Past Discussions. 2016; 1-30. doi: 10.5194/cp-2016-62
Lim S., Fain X., Ginot P., Mikhalenko V., Kutuzov S., Paris J.D., Kozachek A., Laj P. Black carbon variability since preindustrial times in the eastern part of Europe reconstructed from Mt. Elbrus, Caucasus, ice cores. Atmospheric Chemistry and Physics. 2017;17:3489-3505. doi: 10.5194/acp-17-3489-2017
Kutuzov S.S., Mikhalenko V.N., Shahgedanova M.V., Ginot P., Kozachek A.V., Kuderina T.M., Lavrentiev I.I., Popov G.V. Ways of far-distance dust transport onto Caucasian glaciers and chemical composition of snow on the Western plateau of Elbrus. Ice and Snow. 2014;54(3):5-15. doi: 10.15356/2076-6734-2014-3-5-15 In Russian
Zalikhanov M.C., Kerimov A.M., Stepanov G.V., Chernyak M.M. Zagryaznenie lednikov Tsentral’nogo Kavkaza [Pollution of glaciers of the Central Caucasus]. Materialy Glyatsiologicheskikh Issledovaniy. 1992;75:15-22. In Russian
Rototaeva O.V., Kerimov A.M., Khmelevskoi I.F. Soderzhanie makroelementov v lednikakh yuzhnogo sklona El’brusa [The content of macronutrients in the glaciers of the southern slope of Elbrus]. Materialy Glyatsiologicheskikh Issledovaniy. 1999;87:98-105. In Russian
Rototaeva O.V., Khmelevskoi I.F., Bazhev A.B., Heintzenberg I., Stenberg M., Pinglo J. Stroenie i khimicheskiy sostav deyatel’nogo sloya lednika Bol’shoy Azau (El’brus) v oblasti pitaniya [The structure and chemical composition of the active layer of the Bolshoi Azau glacier (Elbrus) in the nutrition area]. Materialy Glyatsiologicheskikh Issledovaniy 1998;84:25-33. In Russian
Davitaya F.F. Dust content as a factor affecting glaciation and climatic change. Annals of the American Association of Geographers. 1969;59(3):552-60. doi: 10.1111/j.1467-8306.1969. tb00690.x
Mikhalenko V., Sokratov S., Kutuzov S., Ginot P., Legrand M., Preunkert S., Lavrentiev I., Kozachek A., Ekaykin A., Fain X., Lim S., Schotterer U., Lipenkov V., Toropov P. Investigation of a deep ice core from the Elbrus western plateau, the Caucasus, Russia. The Cryosphere. 2015;9:2253-2270. doi: 10.5194/tc-9-2253-2015
McConnell J.R., Edwards R., Kok G.L., Flanner M.G., Zender C.S., Saltzman E.S., Banta J.R., Pasteris D.R., Carter M.M., Kahl J.D.W. 20th-century industrial black carbon emissions altered arctic climate forcing. Science. 2007;317:1381-1384. doi: 10.1126/science.1144856
Koch D., Schulz M., Kinne S. Evaluation of black carbon estimations in global aerosol models. Atmospheric Chemistry and Physics. 2009;9:9001-9026. doi: 10.5194/acp-9-9001-2009
Bond T.C., Streets D.G., Yarber K.F., Nelson S.M., Woo J.H., Klimont Z. A technology-based global inventory of black and organic carbon emissions from combustion. J Geophysical Research. 2004;109:D14203. doi: 10.1029/2003JD003697
Rototaeva O.V., Nosenko G.A., Khmelevskoy I.F., Tarasova L.N. Balansovoe sostoyanie lednika Garabashi (El’brus) v 80-kh i 90-kh godakh XX stoletiya [The balance state of the Garabashi glacier (Elbrus) in the 80s and 90s of the XX century]. Materialy Glyatsiologicheskikh Issledovaniy. 2003;95:111-121. In Russian
Rototaeva O.V., Nosenko G.A., Kerimov A.M., Kutuzov S.S., Lavrentiev I.I., Nikitin S.A., Kerimov A.A., Tarasova L.N. Changes of the mass balance of the Garabashy Glacier, Mount Elbrus, at the turn of 20th and 21st centuries. Ice and Snow. 2019;59(1):5-22. doi: 10.15356/2076-6734-2019-1-5-22 In Russian
Warren S., Wiscombe W. A model for the spectral albedo of snow. 2. Snow containing atmospheric aerosols. J the Atmospheric Sciences. 1980;37:2734-2745. doi: 10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.C0;2
Zolotarev E.A., Seliverstov Y.G., Kharkovets E.G. Evolyutsiya oledeneniya El’brusa s nachala malogo lednikovogo perioda [Evolution of the glaciation of Elbrus from the beginning of the small ice age]. Materialy Glyatsiologicheskikh Issledovaniy. Data of Glaciological Studies. 1999;87:112-118. In Russian
Pastukhov A.V. Soobshchenie o voskhozhdenii na El’brus 31 iyulya 1890 goda [Report of the ascent of Elbrus on July 31, 1890]. Zapiski Kavkazskogo otdela Russkogo geograficheskogo obshchestva [Notes of Caucasian Department of Russian Geography Society]. Tiflis. 1893. Book 15. 22-37 pp.
Khan A.L., Klein A.G., Katich J.M., Xian P. Local emissions and regional wildfires influence refractory black carbon observations near Palmer Station, Antarctica. Frontiers in Earth Science. 2019;7:49. doi: 10.3389/feart.2019.00049
Casey K.A., Kaspari S.D., Skiles S.M., Kreutz K., Handley M.J. The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica. J Geophysical Research: Atmospheres. 2017;122:6592-6610. doi: 10.1002/2016JD026418
Mukunda M.S., Suresh B.K., Pandey V.N., Adilya V.A., Girach N.K. Scavenging ratio of black carbon in the Arctic and the Antarctic. Polar Science. 2018;16:10-22. doi: 10.1016/j. polar.2018.03.002
Khan A.L., McMeeking G.R., Schwarz J.P., Xian P., Welch K.A., Berry Lyons W., McKnight D.M. Near-surface refractory black carbon observations in the atmosphere and snow in the McMurdo Dry Valleys, Antarctica, and potential impacts of foehn winds. J Geophysical Research: Atmospheres. 2018;123:2877-2887. doi: 10.1002/2017JD027696
Hara K., Sudo K., Ohnishi T., Osada K., Yabuki M., Shiobara M., Yamanouchi T. Seasonal features and origins of carbonaceous aerosols at Syowa Station, coastal Antarctica. Atmospheric Chemistry and Physics. 2019;19:7817-7837. doi: 10.5194/acp-19-7817-2019
Chaubey J.P., Moorthy K.K., Babu S.S., Nair V.S., Tiwari A. Black carbon aerosols over Antarctica and its scavenging by snow during the southern hemispheric summer. J Geophysical Research. 2010;115:D10210. doi: 10.1029/2009JD013381
Akilan A., Abdul Azeez K.K., Schuh H., Padhy S., Kumar Kotluri S.. Perturbations in atmospheric gaseous components over coastal Antarctica detected in GPS signals and its natural origin to volcanic eruption. Polar Science. 2019;19:69-76. doi: 10.1016/j. polar.2018.11.009
Girina O.A., Gordeev E.I. Proekt KVERT - snizhenie vulkanicheskoy opasnosti dlya aviatsii pri eksplozivnykh izverzheniyakh vulkanov kamchatki i severnykh kuril [KVERT Project: Reduction of volcanic hazards for aviation from explosive eruptions of Kamchatka and Northern Kuriles volcanoes]. Vestnik Dal’’nevostochnogo Otdeleniya Rossiyskoy Akademii Nauk = Vestnik of the Far East Branch of the Russian Academy of Sciences. 2007;2:100-109. In Russian
Pattyn F., Ritz C., Hanna E. The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nature Climate Change. 2018;8:1053-1061. doi: 10.1038/s41558-018-0305-8
Feldmann J., Levermann A., Mengel M. Stabilizing the West Antarctic ice sheet by surface mass deposition. Science Advances. 2019;5(7):4132. doi: 10.1126/sciadv.aaw4132
Medley B., Joughin I., Smith B.E., Das S.B., Steig E.J., Conway H., Gogineni S., Lewis C., Criscitiello A.S., McConnell J.R., van den Broeke M.R., Lenaerts J.T.M., Bromwich D.H., Nicolas J.P., Leuschen C. Constraining the recent mass balance of Pine Island and Thwaites glaciers, West Antarctica, with airborne observations of snow accumulation. The Cryosphere. 2014;8:1375-1392. doi: 10.5194/tc-8-1375-2014
Dutrieux P., Vaughan D.G., Corr H.F.J., Jenkins A., Holland P.R., Joughin I., Fleming A.H. Pine Island glacier ice shelf melt distributed at kilometre scales. The Cryosphere. 2013;7:1543-1555. doi: 10.5194/tc-7-1543-2013
Shepherd A., Ivins E., Rignot E. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature. 2018;558:219-222. doi: 10.1038/s41586-018-0179-y
Rignot E., Velicogna I., van den Broeke M.R., Monaghan A., Lenaerts J. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters. 2011;38:L05503. doi: 10.1029/2011GL046583
Dickens W.A., Kuhn G., Leng M.J. Enhanced glacial discharge from the eastern Antarctic Peninsula since the 1700s associated with a positive Southern Annular Mode. Scientific Reports. 2019;9:14606. doi: 10.1038/s41598-019-50897-4
Zwally J.H., Li J., Robbins J.W., Saba J.L., Yi D., Brenner A.C. Mass gains of the Antarctic ice sheets exceeded losses. J Glaciology. 2015;61(230):1019-1036. doi: 10.3189/2015JoG15J071
Shepherd A., Ivins E.R., Geruo F. and etc. A reconciled estimate of ice-sheet mass balance. Science. 2012;338(6Ш):1183-1189. doi: 10.1126/science.1228102
Kotlyakov V.M., Glazovsky A.F., Moskalevsky M.Y. Dynamics of the ice mass in Antarctica in the time of warming. Ice and Snow. 2017;57(2):149-169. doi: 10.15356/2076-6734-2017-2-149-169 In Russian
Kotlyakov V.M. O sovremennom uvelichenii massy lednikovogo pokrova Antarktidy [On the current increase in the mass of the ice sheet of Antarctica]. Materialy Glyatsiologicheskikh Issledovaniy. Chronicle, discussion. 1962;5:39-44. In Russian
Kotlyakov V.M. Intensivnost’ pitaniya lednikovogo pokrova Antarktidy [Nutritional intensity of the Antarctic ice sheet]. Materialy Glyatsiologicheskikh Issledovaniy. Chronicle, discussion. 1961;1:53-58. In Russian
Hegg D.A., Warren S.G., Grenfell T.C., Doherty S.J., Clarke A.D. Sources of light-absorbing aerosol in arctic snow and their seasonal variation. Atmospheric Chemistry and Physics. 2010;10:10923-10938, doi: 10.5194/acp-10-10923-2010
Eleftheriadis K., Vratolis S., Nyeki S. Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny-Alesund, Svalbard from 1998-2007. Geophysical Research Letters. 2009;36:L02809. doi: 10.1029/2008GL035741
Warneke C., Bahreini R., Brioude J., Brock C.A., de Gouw J.A., Fahey D.W., Froyd K.D., Holloway J.S., Middlebrook A., Miller L., Montzka S., Murphy D.M., Peischl J., Ryerson T.B., Schwarz J.P., Spackman J.R., Veres P. Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophysical Research Letters. 2009;36:L02813. doi: 10.1029/2008GL036194
Strom J., Umegard J., Torseth K., Tunved P., Hansson H.C., Holmen K., Wismann V, Herber A., Konig-Langlo G. One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Svalbard, March 2000-March 2001. Physics and Chemistry of the Earth. 2001;28:1181-1190. doi: 10.1016/j.pce.2003.08.058
Wang M.Y., Overland J.E. A sea ice free summer Arctic within 30 years? Geophysical Research Letters. 2009;36:L18501. doi: 10.1029/2009GL037820
Serreze M.C., Holland M.M., Stroeve J. Perspectives on the Arctic’s shrinking sea-ice cover. Science. 2007;315:1533-1536. doi: 10.1126/science.1139426
Tunved P., Strom J., Krejci R. Arctic aerosol life cycle: linking aerosol size distributions observed between 2000 and 2010 with air mass transport and precipitation at Zeppelin station, Ny-Alesund, Svalbard. Atmospheric Chemistry and Physics. 2013;13:3643-3660. doi: 10.5194/acp-13-3643-2013
GOST R 54650-2011. Soils. Determination of mobile phosphorus and potassium compounds by Kirsanov method modified by CINAO. Moscow: Standardinform Publ.; 2011. 14 p. Available at: http://docs.cntd.ru/document/gost-r-54650-2011 (access 10.02.2020)
DINISO/TS 14256-1-2003. Soil quality - Determination of nitrate, nitrite and ammonium in field moist soils by extraction with potassium chloride solution - Pt. 1: Manual method. Moscow: Standardinform Publ.; 2003. 14 p. Available at: https://www.iso.org/ standard/36706.html (access 10.02.2020)
ISO 11047-1998. Soil quality - Determination of cadmium, cobalt, copper, lead, manganese, nickel and zinc in aqua regia extracts of soil - Flame and electrothermal atomic absorption spectrometric methods. Moscow: Standardinform Publ.; 1998. 18 p. Available at: https:// standards.iteh.ai/catalog/standards/sist/6e5c2955-71f9-48de-be0b-58c161f04894/sist-iso-11047-1999 (access 10.02.2020)
Heg D.A., Warren S.G., Grenfell T.C., Doherty S.J., Larson T.V., Clarke A.D. Source attribution of black carbon in arctic snow. Environmental Science & Technology. 2009;43:4016-4021. doi: 10.1021/es803623f
Abakumov E. Content of available forms of nitrogen, potassium and phosphorus in ornithogenic and other soils of the Fields Peninsula (King George Island, Western Antarctica). Biological Communications. 2018;63(2):109-116. doi: 10.21638/spbu03.2018.203
Polyakov V., Zazovskaya E., Abakumov V. Molecular composition of humic substances isolated from selected soils and cryconite of the Granfjorden area. Spitsbergen. Polish Polar Research. 2019;40(2):105-120. doi: 10.24425/ppr.2019.128369
Expert Group on Black Carbon and Methane. Expert Group on Black Carbon and Methane -Summary of Progress and Recommendations 2019. Norway: Arctic Council; 2019. 88 pp. Available at: http://hdl.handle.net/11374/2411 (access 10.10.2020)
Brown R.D., Mote P.W. The response of Northern Hemisphere snow cover to a changing climate. J Climate. 2009;22:2124-2145. doi: 10.1175/2008JCLI2665.1
Brown R., Derksen C., Wang L.B. A multi-data set analysis of variability and change in Arctic spring snow cover extent. J Geophysical Research: Atmospheres. 2010;115:D16111. doi: 10.1029/2010JD013975
Derksen C., Brown R. Spring snow cover extent reductions in the 2008-2012 period exceeding climate model projections. Geophysical Research Letters. 2012;39:L19504. doi: 10.1029/2012GL053387
Overland J.E., Wang M. When will the summer arctic be nearly sea ice free. Geophysical Research Letters. 2013;40(10):2097-2101. doi: 10.1002/grl.50316
Stroeve J.C., Kattsov V., Barrett A. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters. 2012;39:L16502. doi: 10.1029/2012GL052676
Stroeve J.C., Serreze M.C., Holland M.M. The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climate Change. 2012;110:1005-1027. doi: 10.1007/s10584-011-0101-1
Comiso J.C., Parkinson C.L., Gersten R., Stock L. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters. 2008;35:L01703. doi: 10.1029/2007GL031972
Antoniades D., Francus P., Pienitz R., St-Onge G., Vincent W.F. Holocene dynamics of the Arctic’s largest ice. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(47):18899-18904. doi: 10.1073/pnas.1106378108
Alekseev G.V. The Arctic dimension of Global Warming. Ice and Snow. 2014;54(2):53-68. doi: 10.15356/2076-6734-2014-2-53-68 In Russian
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change. Stocker T.F., Qin D., Plattner G.-K., Tignor M.M.B., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. and Midgley P.M., editors. Cambridge: Cambridge University Press, 2014. Available at: https:// boris.unibe.ch/71452 (access 15.10.2020)
Stone R.S., Sharma S., Herber A., Eleftheriadis K., Nelson D.W. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements. Elementa: Science of the Anthropocene. 2014;2:000027. doi: 10.12952/journal.elementa.000027
Smirnov N.S., Korotkov V.N., Romanovskaya A.A. Black carbon emissions from natural fires on the lands of the forest fund of the Russian Federation in 2007-2012. Russian Meteorology and Hydrology. 2015;40:435-442. doi: 10.3103/S1068373915070018
Stier P., Seinfeld J.H., Kinne S., Feichter J., Oucher O.B. Impact of nonabsorbing anthropogenic aerosols on clear-sky atmospheric absorption. J Geophysical Research: Atmospheres. 2006;111:D18201. doi: 10.1029/2006JD007147
Lamarque J.F., Bond C., Eyring V., Granier C., Heil A., Klimont Z., Lee D., Liousse C., Mieville A., Owen B., Schultz M.G., Shindell D., Smith S.J., Stehfest E., Aardenne J.V., Cooper O.R., Kainuma M., Mahowald N., McConnell J.R., Naik V., Rishi K., Vuuren D.P. Historical (18502000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics. 2010;10:7017-7039. doi: 10.5194/acp-10-7017-2010
Vinogradova A.A., Smirnov N.S., Korotkov V.N., Romanovskaya A.A. Forest fires in Siberia and the Far East: Emissions and atmospheric transport of black carbon to the Arctic. Atmospheric and Oceanic Optics. 2015;28(6):566-574. doi: 10.1134/S1024856015060184
National report on the actions on black carbon and methane emissions reduction. The Arctic Council Framework for Action on Enhanced Black Carbon and Methane Emissions Reductions. Canada: Iqaluit. Publ.; 2015. 34 pp. Available at: https://www.canada.ca/en/ environment-climate-change/corporate/international-affairs/partnerships-organizations/ arctic-reducing-black-carbon-methane.html (access at 20.07.2020)
Karol I.L., Kiselev A.A. Klimat budushchego: vzglyad iz nastoyashchego [Climate of the future: A look from the present]. Priroda. 2011;1:3-9. In Russian
Molina M., Zaelke D., Madhava Sarma K., Andersen A.O., Ramanathan V., Kaniaru D. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions. Proceedings of National Academy of Sciences. 2009;106(49):20616-20621. doi: 10.1073/pnas.0902568106
Jacobson M.Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature. 2001;409:695-697. doi: 10.1038/35055518
Makarov V.I., Popova S.A. Mnogoletnie issledovaniya dinamiki kontsentratsii chernogo (elementnogo) ugleroda v atmosfere novosibirskoy oblasti [Long term trends in black (elemental) carbon concentrations in the ambient air of Novosibirsk region]. Interekspo Geo-Sibir = Interexpo Geo-Siberia. 2016;4(2):141-144. In Russian
Bond T.C., Doherty S.J., Fahey D.W., Forster P.M. and etc. Bounding the role of black carbon in the climate system: A scientific assessment. J Geophysical Research. 2013;118(11):5380-5552. doi: 10.1002/ jgrd.50171
Twomey S. The influence of pollution on the shortwave albedo of clouds. J Atmospheric Sciences. 1977;34:1149-1152. doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0. CO;2
Vinogradova A.A., Smirnov N.S., Korotkov V.N. Anomalous wildfires in 2010 and 2012 on the territory of Russia and supply of black carbon to the Arctic. Atmospheric and Oceanic Optics J. 2016;29:545-550. doi: 10.1134/S1024856016060166
Bachmann J. Black Carbon: A Science-Policy Primer. Arlingtone, USA: Pew Center on Global Climate Change; 2009. 47 p.
Gorchakova I.A. Radiation and temperature effects of smoke aerosol in the Moscow region during the summer fires of 2010. Izvestiya, Atmospheric and Oceanic Physics. 2012;48:496-503. doi: 10.1134/S0001433812050039
Bond T.C., Zarzycki C., Flanner M.G., Koch D.M. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse. Atmospheric Chemistry and Physics. 2011;11:1505-1525. doi: 10.5194/acp-11-1505-2011
Hansen J., Nazarenko L. Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences. 2004;101(2):423-428. doi: 10.1073/pnas.2237157100
Report to Congress on Black Carbon. Sasser E., editor. EPA-450/R-12-001. USA: Department of the Interior, Environment, and Related Agencies Appropriations Act, 2010; 2012. 388 pp. Available at: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=OA QPS&count=10000&dirEntryId=240148&searchall=&showcriteria=2&simplesearch=0&t imstype (access 15.09.2020)
Stroeve J., Serreze M., Holland M., Kay J., Maslanik J. The Arctic’s rapidly shrinking sea ice cover: A research synthesis. Climatic Change. 2012;110(3-4):1005-1027. doi: 10.1007/ s10584-011-0101-1
Clarke A.D., Noone K.J. Soot in the Arctic snowpack: a cause for perturbations in radiative transfer. Atmospheric Environment. 1985;19:2045-2053. doi: 10.1016/j. atmosenv.2007.10.059
Dumont M., Brun E., Picard G. Contribution of light-absorbing impurities in snow to Greenland’s darkening since 2009. Nature Geoscience. 2014;7:509-512. doi: 10.1038/ngeo2180
Flanner M., Zender C., Randerson J., Rasch P. Present-day climate forcing and response from black carbon in snow. J Geophysical Research. 2007;112:D11202. doi: 10.1029/2006JD008003
Quinn P.K., Stohl A., Arnold S., Baklanov A., Bemtsen T.K., Christensen J.H. and etc. AMAP Assessment 2015: Black carbon and ozone as Arctic climate forcers. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP) Publ.; 2015. 116 p.
Quinn P.K., Bates T.S., Baum E., Bond T., Burkhart J.F., Fiore A.M., Flanner M., Garrett T.J., Koch D., McConnell J., Shindell D., Stohl A. The Impact of Short-Lived Pollutants on Arctic Climate. AMAP Technical Report No. 1. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP) Publ.; 2008. 23 p.
Shaw G.E. The Arctic haze phenomenon. Bulletin of the American Meteorological Society. 1995;76:2403-2413.
Schnell R.C., Watson T.B., Bodhaine B.A. NOAA WP-3D instrumentation and flight operations on AGASP-II. J Atmospheric Chemistry. 1989;9:1-16.
Schnell R.C. Arctic haze and the Arctic gas and aerosol sampling program (AGASP). Geophysical Research Letters. 1984;11(5):361-364.
Shaw G.E. Evidence for a central Eurasian source area of Arctic haze in Alaska. Nature. 1983;299:815-818.
Mitchell J.M. Visual range in the polar regions with particular reference to the Alaskan Arctic. JAtmospheric and Terrestrial Physics. 1957;17:195-211.
Hirdman D., Sodemann H., Eckhardt S., Burkhart J.F., Jefferson A. Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output. Atmospheric Chemistry and Physics. 2010;10:669-693. doi: 10.5194/acp-10-669-2010
 Black carbon as a factor in deglaciation in polar and mountain ecosystems: A Review | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2020. №  52. DOI: 10.17223/19988591/52/1

Black carbon as a factor in deglaciation in polar and mountain ecosystems: A Review | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2020. № 52. DOI: 10.17223/19988591/52/1

Download full-text version
Counter downloads: 880