Diversity and characterization of lactic acid bacteria from Common Carp (Cyprinus carpio L.) intestine in winter (Northern Kazakhstan) | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2020. № 52. DOI: 10.17223/19988591/52/2

Diversity and characterization of lactic acid bacteria from Common Carp (Cyprinus carpio L.) intestine in winter (Northern Kazakhstan)

Currently, in Kazakhstan, chemical agents and antibiotics are widely used for treatment and prevention offish diseases at fish farms. The use of probiotics as an alternative to antibiotics can help reduce the spread of antibiotic resistance in this area. The aim of the present study was to isolate the intestinal lactic acid bacteria of wintering carps. We assume that such bacteria can have more adaptive properties and can be used as probiotics for growing carp juveniles at fish farms. A probiotic characteristic of 22 lactic acid bacteria isolated from Common carp intestines was studied. Universal primers were used to determine the sequence of 16S rRNA gene fragments of lactic acid bacteria (LAB). Phylogenetic relationships of the isolates were estimated using the neighbor-joining (NJ) method in Mega 6,0. All identified isolates can grow in temperature range from 10° C to 37° C and in presence of bile salt. The isolated bacteria were screened for antibacterial activity, resistance to bile, resistance to antibiotics and growth at low temperatures. All isolates were tested in vitro for their ability to inhibit the growth of Shewanella xiamenensis, Pseudomonas taiwanensis, Ps. aeruginosa and Aeromonas punctata. As a result, 7 isolates with strong antagonistic activity were selected. 16S rDNA gene sequencing identified 4 isolates as Lactobacillus fermentum, 2 - as L. casei/paracasei and 1 - as Pediococcus pentosaceus. Antibiotic resistance profile of selected strains was studied, too. This study is the first attempt for Kazakhstan to isolate and study the representatives of the normal intestinal microflora of commercialfish species. Selective strains could be potential probiotics forfreshwater aquaculture practices in Kazakhstan. The paper contains 3 Figures, 3 Tables and 36 References. Acknowledgments: The authors thank the staff of Maybalyk (50°59'25"N, 71°30'11''E) fish farm and, particularly, Dmitry Gudyno, its General Director. The Authors declare no conflict of interest.

Download file
Counter downloads: 192

Keywords

probiotics, aquaculture, pathogen, lactic acid bacteria (LAB), Cyprinus carpio

Authors

NameOrganizationE-mail
Urazova MairaRepublican Collection of Microorganismsmaira_01@mail.ru
Zakarya KunsuluRepublican Collection of Microorganismsrkm_kz@mail.ru
Sarmurzina ZinigulRepublican Collection of Microorganismssarmurzina@list.ru
Bissenova GulmiraRepublican Collection of Microorganismsbissenova84@mail.ru
Abitayeva GulyaimRepublican Collection of Microorganismsgulyaim_as@mail.ru
Shevtsov AlexandrRepublican Collection of Microorganismsncbshevtsov@gmail.com
Tekebayeva ZhanarRepublican Collection of Microorganismsj.tekebaeva@mail.ru
Abzhalelov AkhanRepublican Collection of Microorganismsab_akhan@mail.ru
Всего: 8

References

Jose N.M., Bunt C.R., Hussain M.A. Implications of antibiotic resistance in probiotics. Food Rev. Int. 2015;31:52-62. doi: 10.1080/87559129.2014.961075
Sharma P., Tomar S.K., Goswami P., Sangwan V., Singh R. Antibiotic resistance among commercially available probiotics. Food Res. Int. 2014;57:176-195. doi: 10.1016/j. foodres.2014.01.025
Noor Uddin G.M., Larsen M.H., Christensen H., Aarestrup F.M., Phu T.M., Dalsgaard A. Identification and antimicrobial resistance of bacteria isolated from probiotic products used in shrimp culture. PLoS ONE. 2015;10(7):e0132338. doi: 10.1371/journal.pone.0132338
Nagyzbekkyzy E., Abitayeva G., Anuarbekova S., Shaikhina D., Li K., Shaikhin S., Saduakhassova S., Kushugulova A., Marotta F. Investigation of acid and bile tolerance, antimicrobial activity and antibiotic resistance of Lactobacillus strains isolated from Kazakh dairy foods. Asian J AppliedSci. 2016;9:143-158. doi: 10.3923/ajaps.2016.143.158
Hagi T., Tanaka D., Iwamura Y., Hoshino T. Diversity and seasonal changes in lactic acid bacteria in the intestinal tract of cultured freshwater fish. Aquaculture. 2004;234:335-346. doi: 10.1016/j.aquaculture.2004.01.018
Bucio A., Hartemink R., Schrama J.W., Verreth J., Rombouts F.M. Presence of lactobacilli in the intestinal content of freshwater fish from a river and from a farm with recirculation system. Food Microbiol. 2006;23:476-482. doi: 10.1016/j.fm.2005.06.001
Aroutcheva A., Gariti D., Simon M., Shott S., Faro J., Simoes J., Gurguis A., Faro S. Defence factors of vaginal lactobacilli. Am J Obstet Gynecol. 2001;185:375-379.
Wang R., Ran Ch., Ringo E., Zhou Z.G. Progress in fish gastrointestinal microbiota research. RevAquacult. 2018;10:626-640. doi: 10.11n/raq.12191
Ringo E., Gatesoupe F.J. Lactic acid bacteria in fish: A review. Aquaculture. 1998;160:177-203.
Borsodi A.K., Szabo A., Krett G., Felfoldi T., Specziar A., Boros G. Gut content microbiota of introduced bigheaded carps (Hypophthalmichthys spp.) inhabiting the largest shallow lake in Central Europe. Microbiol Res. 2017;195:40-50. doi: 10.1016/j.micres.2016.11.001
Liu H., Guo X., Gooneratne R., Lai R., Zeng C., Zhan F., Wang W. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep. 2016;6:e243440. doi: 10.1038/srep24340
Ye L., Amberg J., Chapman D., Gaikowski M., Liu W.T. Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME. 2014;8:541-551. doi: 10.1038/ismej.2013.181
Li X., Yan Q., Xie S., Hu W., Yu Y., Hu Z. Gut microbiota contributes to the growth of fastgrowing transgenic Common Carp (Cyprinus carpio L.) Plos ONE. 2013;8(5):e64577. doi: 10.1371/journal.pone.0064577
Van Kessel M., Dutilh B.E., Neveling K., Kwint M., Veltman J.A., Flik G., Jetten M., Klaren P., Op den Camp H. Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express. 2011;1:41:1-9. doi: 10.1186/2191-0855-1-41
Ibrahem M.D. Evolution of probiotics in aquatic world: Potential effects, the current status in Egypt and recent prospectives. J AdvRes. 2015;6:765-791. doi: 10.1016/j.jare.2013.12.004
Hagi T., Hoshino T. Screening and characterization of potential probiotic lactic acid bacteria from cultured Common Carp intestine. Biosci Biotechnol Biochem. 2009;73(7):1479-1483. doi: 10.1271/bbb.80746
Buntin N., Chanthachum S., Hongpattarakere T. Screening of lactic acid bacteria from gastrointestinal tracts of marine fish for their potential use as probiotics. Songklanakarin J Sci Technol. 2008;30 (1):141-148.
Arihara K., Ota H., Itoh M., Kondo Y., Sameshima T., Yamanaka H., Akimoto M., Kanai S., Miki T. Lactobacillus acidophilus group lactic acid bacteria applied to meat fermentation. J Food Sci. 1998;63(3):544-547.
CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. CLSI supplement M100S [Electronic resource]. Wayne, P.A.: Clinical and Laboratory Standards Institute; 2016. 251 p.
Clayton R.A., Sutton G., Hinkle P.S., Bult Jr. C., Fields C. Intraspecific variation in small-subunit rRNA sequences in GenBank: Why single sequences may not adequately represent prokaryotic taxa. Int J Syst Bacteriol. 1995;45:595-599.
CLSI. Methods for antimicrobial dilution and disk susceptibility testing of unfrequently isolated or fastidious bacteria. Approved guideline. 2nd ed. CLSI document M45-A2. Wayne, PA: Clinical and Laboratory Standards Institute; 2010. 80 p.
Sarmurzina Z., Bissenova G., Zakarya K., Dospaeva R., Shaikhin S., Abzhalelov A. Characterization of probiotic strains of Lactobacillus candidates for development of symbiotic product for kazakh population. J Pure Appl Microbiol. 2017;11(1):151-161.
Maji U.J., Mohanty S., Mahapatra A.S., Maiti N.K. Diversity and probiotic potentials of putative lactic acid bacteria for application in freshwater aquaculture. Turk J Fish Aquat Sc. 2016;16:805-818.
Picchietti S., Fausto A., Randelli E., Carnevali O., Taddei A., Buonocore F., Scapigliati G., Abelli L. Early treatment with Lactobacillus delbrueckii strain induces an increase in intestinal T-cells and granulocytes and modulates immune-related genes of larval Dicentrarchus labrax (L.). Fish Shellfish Immunol. 2009;26:368-376. doi: 10.1016/j. fsi.2008.10.008
Amin M., Bolch C.J.S., Adams M.B., Burke C.M. Growth enhancement of tropical abalone, Haliotis asinina L., through probiotic supplementation. Aquac Int. 2020;28:463-475. doi: 10.1007/s10499-019-00473-4
Didinen B.I., Onuk E.E., Metin S., Cayli O. Identification and characterization of lactic acid bacteria isolated from rainbow trout (Onchorhynchus mykiss, Walbaum 1792), with inhibitory activity against Vagococcus salmoninarum and Lactococcus garvieae. Aquacult Nutr. 2017;24:400-407. doi: 10.im/anu.12571
Kumaree K.K., Akbar A., Anal A.K. Bioencapsulation and application of Lactobacillus plantarum isolated from catfish gut as an antimicrobial agent and additive in fish feed pellets. Ann Microbiol. 2015;65:1439-1445. doi: 10.1007/s13213-014-0982-0
Dahia T., Gahlawat S., Sihag R. Elimination of pathogenic bacterium (Micrococcus sp.) by the use of probiotics. Turk J Fish Aquat Sc. 2012;12:185-187.
Ringo E., Hoseinifar S.H., Ghosh K., Van Doan H., Ram Deck B., Kyo Song S. Lactic acid bacteria in finfish - An update. Frontiers in Microbiology. 2018;9:1818. doi: 10.3389/ fmicb.2018.01818
Rauta P.R., Dhupa M., Nayak B. Screening and characterization of potential probiotic lactic acid bacteria isolated from vegetable waste and fish intestine. Int J Curr Microbiol Appl Sci. 2013;2:234-244.
Kang C.H., Shin Y., Kim Y., So J.S. Isolation of Lactobacillus strains from shellfish for their potential use as probiotics. Biotechnol Bioproc E. 2016;21:46-52. doi: 10.1007/s12257-015-0518-x
Akhter N., Wu B., Memon A.M., Mohsin M. Probiotics and prebiotics associated with aquaculture: A review. Fish Shellfish Immunol. 2015;45:733-741. doi: 10.1016/j. fsi.2015.05.038
Chauhan A., Singh R. Probiotics in aquaculture: A promising emerging alternative approach. Symbiosis. 2019;77:99-113. doi: 10.1007/s13199-018-0580-1
Wu S., Wang G.R., Angert E., Wang W., Li W., Zou H. Composition, diversity, and origin of the bacterial community in Grass Carp intestine. Plos ONE. 2012;7(2):e30440. doi: 10.1371/ journal.pone.0030440
Wanka K.M., Damerau T., Costas B., Krueger A., Schulz C., Wuertz S. Isolation and characterization of native probiotics for fish farming. BMC Microbiology. 2018;18:e119. doi: 10.1186/s12866-018-1260-2
Banerjee G., Ray A.K. The advancement of probiotics research and its application in fish farming industries. Res. Vet. Sci. 2017;115:66-77. doi: 10.1016/j.rvsc.2017.01.016
 Diversity and characterization of lactic acid bacteria from Common Carp (<i>Cyprinus carpio</i> L.) intestine in winter (Northern Kazakhstan) | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2020. №  52. DOI: 10.17223/19988591/52/2

Diversity and characterization of lactic acid bacteria from Common Carp (Cyprinus carpio L.) intestine in winter (Northern Kazakhstan) | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2020. № 52. DOI: 10.17223/19988591/52/2

Download full-text version
Counter downloads: 880