Mycobiota of the pelagic zone of Odessa region in the northwestern Black Sea | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2020. № 52. DOI: 10.17223/19988591/52/8

Mycobiota of the pelagic zone of Odessa region in the northwestern Black Sea

Mycobiota of the marine area of Odessa region was studied (30°70'00"-31°00'00"N, 46°23'00"-46°60'00"E) (See Fig. 1). Hydrological and hydrochemical regimes of the marine area of Odessa region in the northwestern Black Sea are affected by the discharge of the Dnieper (93.4%) and the Southern Bug (5.7%) rivers, the permanent anthropogenic discharges of the cities of Odessa, Chernomorsk (Ilyichyovsk), Yuzhnyi and their ports, shipping, dredging, and the open sea. The aim of this work was to study the species composition, the number of colony forming units (CFU) and the dynamics of the spatiotemporal distribution of reared microfungi as a function of abiotic factors and the trophic level of seawater in this area. Water samples were taken in summer and autumn 2008-2012 in the surface (1 m depth) and bottom (7-24 m depth) layers. The samples were taken, at least, in three replicates. The results of processing 258 samples from 22 stations were analyzed. The effects of environmental factors (water temperature, salinity, dissolved oxygen, five-day biochemical oxygen demand, petroleum hydrocarbons, dissolved metals Cu, Zn, Ni, Cd and suspended particulate matter) were studied in 140 samples (See Table 1). Micromycetes were isolated on Czapek’s medium prepared in sea water. 1 ml of sample water was added to a Petri dish and filled with medium cooled to approximately 36-40 °C. To suppress the growth of bacteria, 0.03% chloramphenicol was added to the medium (by volume of the medium). Cultivation was carried out at a temperature of 18-20 °C for 2-8 weeks. Micromycetes were identified by morphological and cultural characteristics according to Vera Bilay and Eleonora Koval’ (1988) and GS De Hooh ea tl. (2000). Nomenclature, and taxonomy of fungi correspond to The Index Fungorum database. The ecological analysis of mycocomplexes was carried out according to: species composition, the number of species in complexes, frequency of occurrence of a species and the number of colony-forming units (CFU / L). In this research, 50 fungal species of 19 genera, 14 families, 9 orders, 4 classes of the division Ascomycota were revealed. Fungal taxa from Odessa region were grouped into families. The family Aspergillaceae included the genera Aspergillus, Penicillium and Talaromyces (27 species); the family Pleosporaceae included the genera Alternaria and Stemphylium (8); and there were 3 species of the genus Cladosporium from the family Cladosporiaceae. In total, 76.0% of species found were from the three families (See Table 2). Using Average Taxonomic Distinctness index, AvTD (Д+), and Variation in Taxonomic Distinctness index, VarTD (Л+), features of the taxonomic diversity of mycocomplexes were revealed. These indices were calculated from a matrix of micromycete species from the region under study combined with the fungi list (master list, 219 species) of the Black Sea pelagic zone. In the analysis, the taxonomy levels from Species to Kingdom were included. For the indices Д+ and Л+, 95% probability funnel graphs were plotted, and their mean expected values were calculated for mycobiota of the region under study and for mycocomplexes from each station. It was found out that the mean expected values of the index Д+ for mycobiota of the marine area of Odessa region and the stations are considerably lower, and index Л+ values are higher than those for the sea as a whole (See Fig. 2 and 3). According to literature sources, no significant seasonal and inter-annual changes in the trophic status of the region occurred in 1992-2010. It was transitional between mesotrophic and eutrophic. The long-term mean TRIX value was 5.3 (4-5: medium trophic level; 5-6: high trophic level and poor water quality). In the species composition and numerical structure of mycocomplexes of the mesotrophic and eutrophic zones, no significant differences were detected. Over the entire period of this research, a relatively uniform distribution of the mean abundance of fungi over the area and depth was noted (See Table 3). No significant correlation was found between abiotic parameters under study and micromycete abundance over the horizons, seasons, sampling dates, location of stations, as well as mesotrophic and eutrophic zones. In the region, 44% of fungi-indicators of different kinds of pollution were registered. In the areas of stormwater runoff and wastewater treatment plant discharges, the indicator value (IndVal) was the largest for melanin-containing fungi Cladosporium cladosporioides (28.3%), Alternaria alternata (17.5%), and Aspergillus niger (12.3%), which are resistant to several adverse environmental factors. In the eutrophic zone, large values of the indices were found in Aspergillus clavatus (21,2%), Penicillium expansum (17,7%), Penicillium citrinum (16,1%), Al. tenuissima (12,5%), and in A. fumigatus (60%), Al. alternata (40%) and A. niger (35,7%) in places of local oil pollution. It is established that in the entire marine area of Odessa region, the formed mycocomplexes have a high similarity in species and numerical structure, and therefore, they can be considered as a single community. The paper contains 3 Figures, 3 Tables and 26 References. Acknowledgments: The author expresses her sincere gratitude to the staff of the Institute of Marine Biology of the National Academy of Sciences of Ukraine (Odessa): Professor Yuvenaly P Zaitsev, Academician of NASU; Professor Boris G Aleksandrov, Dr. Sci. (Biol.), Corresponding Member of NASU; Professor Lyudmila V Vorobyova, Dr. Sci. (Biol.); Sergey E Dyatlov, Cand. Sci. (Biol.), Head of the Department of Aquatic Environment Quality, for their valuable help in the research.

Download file
Counter downloads: 147

Keywords

Alternaria, Aspergillus, Penicillium, taxonomic diversity of marine fungi, fungi-indicators

Authors

NameOrganizationE-mail
Kopytina Nadezda I.A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Scienceskopytina_n@mail.ru
Всего: 1

References

Jones E.B.G., Sakayaroj J., Suetrong S., Somrithipol S., Pang K.L. Classification of marine Ascomycota, anamorphic taxa and Basidiomycota // Fungal Diversity. 2009. Vol. 35. PP. 1-187.
Jones E.B.G., Suetrong S., Sakayaroj J., Bahkali A.H., Abdel-Wahab M.A., Boekhout T., Pang K.-L. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota // Fungal Diversity. 2015. Vol. 73. PP. 1-72. doi: https://link.springer.com/ article/10.1007/s13225-015-0339-4
Pang K.-L., Overy D.P., Jones E.B.G., Calado M. Da.L., Burgaud G., Walker A.K., Johnson J.A., Kerr R.G., Cha H-J., Bills G.F. ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: Toward a new consensual definition // Fungal Biology Reviews. 2016. Vol. 30, Issue 4. PP. 163-175. doi: 10.1016/j.fbr. 2016.08.001
Одесский регион Черного моря: гидробиология пелагиали и бентали / Л.В. Воробьева, И.И. Кулакова, И.А. Синегуб, Л.Н. Полищук, Д.А. Нестерова, А.С. Бондаренко, А.А. Снигирева, А.А. Рыбалко, С.А. Кудренко, В.В. Портянко, Р.В. Мигас, Е.Е. Узун, И.В. Олефир; Под общ. ред. Б.Г. Александрова. Одесса : Астропринт, 2017. 324 с.
Методы экспериментальной микологии. Справочник / ред. В.И. Билай. Киев : Наукова думка, 1982. 550 с.
Билай В.И., Коваль Э.З. Аспергиллы. Определитель. Киев : Наукова думка, 1988. 202 с.
De Hoog G.S., Guarro J., Gene J., Figueras M.J. Atlas of clinical fungi. Utrecht: CBS; Spain.: Reus, 2000. 1126 p.
Index Fungorum [Electronic resource]. Available at: http://www.indexfungorum.org/ names/Names.asp (accessed 15.02.-10.05.2020).
Clarke K.R., Warwick R.M. A further biodiversity index applicable to species lists: variation in taxonomic distinctness // Marine Ecology Progress Series. 2001. Ser. 216. PP. 265-278.
Clarke K.R, Gorley R.N, Somerfield P.J., Warwickb R.M. Change In Marine Communities: An Approach to Statistical Analysis and Interpretation, 3rd edition PRIMER-E: Plymouth. 2014. 262 p.
Неврова Е.Л. Структурные основы региональных отличий таксономического разнообразия донных диатомовых (BaciUariophyta) Чёрного моря // Морской биологический журнал. 2016. Т 1, № 1. С. 43-63.
Mouillot D., Gaillard S., Aliaume C., Verlaque M., Belsher T., Troussellier M., Do Chi T. Ability of taxonomic diversity indices to discriminate coastal lagoon environments based on macrophyte communities // Ecological Indicators. 2005. № 5 (1). PP. 1-17. doi: 10.1016/j. ecolind.2004.04.004
Копытина Н.И. Водные микроскопические грибы Понто-Каспийского бассейна (чек-лист, синонимика) / ред. Л.И. Рябушко. Воронеж : Ковчег, 2018. 292 с. doi: 10.21072/978-5-6042082-0-5
Прокопенко Е.В. Пауки (Aranel) урочища Грабовое (Пятихатский район Днепропетровской области) // Проблемы экологии и охраны природы техногенного региона. 2018. № 1-2. С. 63-70.
Терехова В.А. Микромицеты в экологической оценке водных и наземных экосистем. М. : Наука, 2007. 215 с.
Дятлов С.Е., Кошелев А.В., Петросян А.Г., Павлова Е.А., Секундяк Л.Ю. Интегральная оценка качества воды и донных отложений полигона «Одесский регион северозападной части Чёрного моря» // Наукові записки Тернопільського национального педагогічного університету імені Володимира Гнатюка. Серія: Біологія. 2013. № 2 (55). С. 50-56.
Дятлов С.С., Чепіжко О.В., Урдя В.О. Міжрічна мінливість вмісту важких металів у воді та донних відкладах полігону «Одеський регіон ПЗЧМ» // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2012. Вып. 26, т. 1. С. 257-269.
Доценко С.А., Подплетная Н.Ф., Савин П.Т. Динамика нефтяного загрязнения вод и донных осадков у берегов Одессы // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2011. Т. 1, вып. 25. С. 220-228.
Дятлов С.Е., Гончаров А.Ю., Богатова Ю.И. Трофический статус северо-западной части Черного моря // Вода: гигиена и экология. 2013. № 1 (1). С. 51-60.
Шабанов В.В., Маркин В.Н. Методика эколого-водохозяйственной оценки водных объектов. М. : ФГБОУ ВПО РГАУ МСХА им. К.А. Тимирязева, 2014. 162 с.
Микроорганизмы как агенты биомониторинга и биоремедиации загрязненных почв / Т.Я. Ашихмина, Л.И. Домрачева, Л.В. Кондакова, И.Г. Широких, А.А. Широких, А.И. Фокина, С.Г. Скугорева, Е.А. Горностаева, Е.С. Соловьёва, Е.В. Товстик, С.Ю. Огородникова, Ю.Н. Зыкова; Под общ. ред. Т.Я. Ашихминой, Л.И. Домрачевой. Киров : Науч. изд. ВятГУ, 2018. 254 с.
Донерьян Л.Г., Водянова М.А., Тарасова Ж.Е. Микроскопические почвенные грибы -организмы-биоиндикаторы нефтезагрязненных почв // Гигиена и санитария. 2016. № 95 (9). С. 891-894. doi: 10.18821/0016-9900-2016-95-9-891-894
Григориади А.С., Якупова А.Б., Амирова А.Р., Ерохина Н.И. Микологическая оценка почвы, загрязненной отходами производства нефтеперерабатывающей промышленности // Известия Самарского научного центра Российской академии наук. 2011. Т 13, № 5(2). С. 155-157.
Al-Dossary M.A., Abood S.A., Hamid T.AL-Saad. Biodegradation of Crude Oil Using Aspergillus species // Journal of Biology Agriculture and Healthcare. 2019. Vol. 9, № 4. PP. 60-64. doi: 10.7176/JBAH/9-4-09
Al-Nasrawi H. Biodegradation of Crude Oil by Fungi Isolated from Gulf of Mexico // Journal of Bioremediation & Biodegradation. 2012. Vol. 3, is. 4. 147. doi: 10.4172/2155-6199.1000147
Марфенина О.Е. Антропогенная экология почвенных грибов. М. : «Медицина для всех». Национальная Академия Микологии, 2005. 196 с
 Mycobiota of the pelagic zone of Odessa region in the northwestern Black Sea | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2020. №  52. DOI: 10.17223/19988591/52/8

Mycobiota of the pelagic zone of Odessa region in the northwestern Black Sea | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2020. № 52. DOI: 10.17223/19988591/52/8

Download full-text version
Counter downloads: 883