The structure of Gluconacetobacter hansenii GH 1/2008 population cultivated in static conditions on various sources of carbon
Bacterial cellulose (BC) is a natural polymer that has a number of unique properties that determine the need to synthesize large amounts of it and to search the ways to increase the productivity of strains and to optimize the nutritive media. It is known that the choice of the producer for BC synthesis has an impact on its final properties and on the productivity of this polymer production. Under static liquid phase cultivation conditions, all cellulose-producing bacteria form a uniform film on the medium surface that serves as a scaffold for cells immobilization, thus providing them with the access to the air/liquid interface, where the access to oxygen is not limited. Meanwhile, when cultivation goes under agitating conditions, most of Gluconacetobacter xylinus strains produce less cellulose in form of globules of various sizes, despite the better oxygen access. Several authors explain the lower cellulose outcome when cultivated under agitated conditions by the appearance of spontaneous mutants that do not produce cellulose in the population. It was revealed that when grown on agarized media, cellulose-non-producing mutants form colonies of a specific mucoid type, while non-mucoid phenotype cells form smooth colonies of non-mucoid type. To our knowledge, there is no published research on the impact of cultivation conditions and nutritive medium composition on the appearance of spontaneous phenotype mutations in the population of Gluconacetobacter hansenii representatives. The aim of the present research is to elucidate the impact of the carbon source on the productivity of G. hansenii strain and the appearance of cellulose-negative mutants under static cultivation conditions. We studied the strain G. hansenii GH 1/2008 (VKPM B-10547) as a BC source. Liquid phase static cultivation of G. hansenii GH 1/2008 was carried out using the modified Hestrin-Schramm (HS) medium, containing 4% of monosaccharides (glucose, fructose and galactose) or disaccharides (sucrose, maltose, lactose) as carbon sources. The occurrence of mutants was calculated considering phenotypes of colonies obtained by seeding the samples of cultural liquid and wash-offs of cells from films produced by the cultivation of the producer on modified agarized HS media. The polymer outcome was expressed as the film absolute dry weight (a.d.w.) per cultivation medium volume unit. We studied the morphology of the producer’s wild type and mutant cells by means of atomic force microscopy (AFM) (See Fig. 8). The structural organization of the produced films and gel was revealed by means of scanning electron microscopy (SEM) performed after freeze-drying. The composition of the fibers was checked acquiring FTIR Spectroscopy. We established that G. hansenii GH 1/2008 produces a dense film on media containing fructose, glucose and sucrose, while the polymer has gel consistence when grown on maltose, galactose and lactose (See Fig. 1). The maximal quantity (a.d.w.) of polymer was produced on fructose- and sucrose-containing media. The overall number of immobilized producer cells was considerably higher when grown on media with glucose, fructose and sucrose than on gels grown on those containing maltose, galactose and lactose (See Table 1). SEM imaging revealed considerable difference in the microscale organization of films and gels produced by G. hansenii GH 1/2008 on various carbon sources (See Fig. 2). Fructose-containing medium yields the densest structure with dense layers separated by 2μm thick areas filled with non-ordered BC fibrils. The microscale organization of sucrose- and glucose-based films were very similar and had a cell-like structure. In cases where the synthesized polymer had squeezable gel consistence, its microstructure was not layered but close to isotropic. The studies of gels by means of FTIR spectroscopy showed that the gels are also formed of BC molecules; the spectra were almost identical (See Fig. 4). The only difference, i.e. the intensity of the 1638 cm-1 peak, can be explained by the presence of a higher amount of bound water in the latter. It is known that some strains of this species may produce glucuronic acid oligomers under unfavorable conditions, but peaks corresponding to carboxyl or carbonyl groups were not revealed in the spectra. This is the evidence that no detectable amounts of glucuronic acid were produced under conditions studied. The analysis of colonies of G. hansenii GH 1/2008 cultivated under static conditions on media containing various carbon sources revealed colonies with two dominating phenotypes: non-mucoid smooth convex colonies and mucoid flat ones (See Fig. 5). The number of cells forming smooth non-mucoid colonies on agarized media was maximal in the inoculations of cultural liquids after the cultivation on media containing fructose and sucrose, i.e. those carbon sources that demonstrated high productivity per 1L of cultural liquid (See Fig. 6). In the inoculations of the cultural liquid and wash-offs of cells immobilized on gels obtained by the cultivation on media containing galactose and lactose, the number of mucoid colonies was considerably higher (See Table 2). The clones forming mucoid type colonies did not produce BC films when reinoculated in liquid media, while those forming colonies of mucoid (smooth) type produce films on the 3rd day of cultivation (See Fig. 7). The analysis of cells shape and sizes by means of AFM did not reveal any statistically valid difference between the mutants and the wild type. The present research shows that the source of carbon is a selective factor in the formation of the inner composition of the population of clones of the bacterial cellulose producer Gluconacetobacter hansenii GH 1/2008. The proliferation of cellulosenegative cells arouses competition for the substrate with cellulose-positive cells of G. hansenii GH 1/2008 that reduces the number of the latter and the production of the exopolymer. The paper contains 8 Figures, 2 Tables and 38 References. Acknowledgments: The authors thank the Department of Structural Studies, ND Zelinsky Institute of Organic Chemistry, Moscow for carrying out SEM imaging. The Authors declare no conflict of interest. The paper contains 8 Figures, 2 Tables and 38 References. The Authors declare no conflict of interest.
Keywords
Gluconacetobacter hansenii,
bacterial cellulose,
cellulose-negative mutants,
microscale morphologyAuthors
Kiselyova Olga I. | Lomonosov Moscow State University | ok@polly.phys.msu.ru |
Lutsenko Sergey V. | I.M. Sechenov First Moscow State Medical University | svlutsenko57@mail.ru |
Feldman Natalia B. | I.M. Sechenov First Moscow State Medical University | n_feldman@mail.ru |
Gavryushina Irina A. | G.F. Gause Institute of New Antibiotics | irina-alekcandrovna2013@yandex.ru |
Sadykova Vera S. | G.F. Gause Institute of New Antibiotics | sadykova_09@mail.ru |
Pigaleva Marina A. | Lomonosov Moscow State University | pigaleva@polly.phys.msu.ru |
Rubina Margarita S. | A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences | margorubina@yandex.ru |
Gromovykh Tatiana I. | I.M. Sechenov First Moscow State Medical University | gromovykhtatyana@mail.ru |
Всего: 8
References
Brown R.M.Jr., Saxena I.M. Cellulose biosynthesis:A model for understanding the assembly of biopolymers // Plant Physiology and Biochemistry. 2000. Vol. 38, No. 1. PP. 57-67.
Hassan E.A., Abdelhady H.M., Abd El-Salam S.S., Abdullah S.M. The characterization of bacterial cellulose produced by Acetobacter xylinum and Komgataeibacter saccharovorans under optimized fermentation conditions // Br. Microbiol. Res. J. 2015. Vol. 9, No. 3. PP. 1-13.
Болотова К.С., Чухчин Д.Г., Майер Л.В., Гурьянова А.А. Морфологические особенности фибриллярной структуры растительной и бактериальной целлюлозы // Лесной журнал. 2016. No. 6. С. 153-165.
Lee K.-Y, Buldum G., Mantalaris A., Bismarck A. More than meets the eye in bacterial cellulose: boisynthesis, bioprocessing, and applications in advanced fiber composites // Macromolecular Bioscience. 2014. Vol. 14, No. 1. PP. 10-32.
Park J.K., Jung J.Y., Park Y.H. Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol // Biotechnol lett. 2003. Vol. 25. PP. 2055-2059.
Mikkelsen D., Flanagan B.M., Dykes G.A., Gidley M.J. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524 // Journal of Applied Microbiology. 2009. Vol. 107, No. 2. PP. 576-583.
Jozala A.F., Pertile R.A.N., dos Santos C.A., de Carvalho Santos-Ebinuma V, Seckler M.M., Gama F.M., Pessoa A., Jr. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media // Applied Microbiology and Biotechnology. 2015. Vol. 99, No. 3. PP. 1181-1190.
Громовых Т.И., Фан М.Х., Данильчук Т.И. Штамм бактерии Gluconacetobacterhansenii GH-1/2008 - продуцент бактериальной целлюлозы // Патент 2464307. Российская Федерация, МПК: C12N 1/20, C12P 19/04. Заявка No. 2011121841, приор. 31.05.2011; опубл. 10.20.2012 г. Бюл. 2011. No. 29. 12 с.
Хрипунов А.К., Ткаченко А.А. Состав питательной среды культивирования Acetobacter xylinum для получения бактериальной целлюлозы // Патент 2141530. Российская Федерация, МПК: C12P 19/02, C12N 1/20. Заявка No. 98108987/13, приор. 05.05.1998; опубл. 11.20.1999 г Бюл. 1999. No. 6 с.
Ревин В.В., Лияськина Е.В. Штамм Gluconacetobacter sucrofermentans - продуцент бактериальной целлюлозы // Патент 2523606. Российская Федерация, МПК: C12N 1/20, C12P 19/04, C12R 1/01. Заявка No. 2013111072/10, приор. 12.03.2013; опубл. 20.07.2014 г. Бюл. 2015. No. 20. 6 с.
Волова Т.Г., Прудникова С.В., Шишацкая Е.И. Штамм бактерии Komagataeibacter xylinus - продуцент бактериальной целлюлозы // Патент 2568605. Российская Федерация, МПК: C12N 1/20, C12P 19/04, C12R 1/00. Заявка No. 2014150288/10, приор. 12.11.2014; опубл. 20.11.2015 г. Бюл. 2015. No. 32. 11 с.
Son H.J., Heo M.S., Kim Y.G., Lee S.J. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter // Biotechnology and Applied Biochemistry. 2001. Vol. 33, No. 1. PP. 1-5.
Ruka D.R., Simon G.P., Dean K.M. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose // Carbohydrate Polymers. 2012. Vol. 89, No. 2. PP. 613-622.
Tsouko E., Kourmentza C., Ladakis D., Kopsahelis N., Mandala I., Papanikolaou S., Paloukis F., Alves V., Koutinas A. Bacterial сellulose production from industrial waste and byproduct streams // International Journal of Molecular Sciences. 2015. Vol. 16, No. 7. PP. 14832-14849.
Ross P., Mayer R., Benziman M. Cellulose biosynthesis and function in bacteria // Microbiol. Rev. 1991. Vol. 55. PP. 35-58.
Chawla P.R., Bajaj I.B., Survase S.A., Singhal R.S. Fermentative Production of Microbial Cellulose // Food Technol. Biotechnol. 2009. Vol. 47. PP. 107-124.
Li Y, Tian C., Tian H., Zhang J., He X., Ping W., Lei H. Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved // Appl Microbiol Biotechnol. 2012. Vol. 96. PP. 1479-1487.
Schramm M., Hestrin S. Factors affecting production of cellulose at the air liquid interface of a culture of Acetobacter xylinum // Journal of General Microbiology. 1954. Vol. 11, PP. 123-128.
Son H.J., Heo M.S., Kim Y.G., Lee S.J. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures // Biotechnology and Applied Biochemistry. 2001. Vol. 33. PP. 1-5.
Song H.-J., Li H., Seo J.-H., Kim M.-J., Kim S.-J. Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes // Korean Journal of Chemical Engineering. 2009. Vol. 26. PP. 141-146.
Li H., Kim S.-J., Lee Y.-W., Kee C., Oh I. Determination of the stoichiometry and critical oxygen tension in the production culture of bacterial cellulose using saccharified food wastes // Korean Journal of Chemical Engineering. 2011. Vol. 28. PP. 2306-2311.
Krystynowicz A., Czaja W., Wiktorowska-Jezierska A., Goncalves-Miskiewicz M., Turkiewicz M., Bielecki S. Factors affecting the yield and properties of bacterial cellulose // Journal of Industrial Microbiology and Biotechnology. 2002. Vol. 29. PP. 189-195.
Krystynowicz A., Koziolkiewicz M., Wiktorowska-Jezierska A., Bielecki S., Wojtera E, Masny A., Plucienniczak A. Molecular basis of cellulose biosynthesis disappearance in submerged culture of Acetobacter xylinum // Acta Biochimica Polonica. 2005. Vol. 52. PP. 691-698.
Valla S., Kjosbakken J. Cellulose-negative mutants of Acetobacter xylinum // Journal of General Microbiology. 1982. Vol. 128. PP. 1401-1408.
Nguyen V.T., Flanagan B., Mikkelsen D., Ramirez S., Rivas L., Gidley M.J., Dykes G.A. Spontaneous mutation results in lower cellulose production by a Gluconacetobacter xylinus strain from Kombucha // Carbohydrate Polymers. 2010. Vol. 80. PP. 337-343.
Kuga S., Takagi S., Brown R.M. Native folded-chain cellulose II // Polymer. 1993. Vol. 34. PP. 3293-3297.
Valla S., Coucheron D.H., Fjaervik E., Kjosbakken J., Weinhouse H., Ross P., Amikam D., Benziman M. Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum : complementation of cellulose-negative mutant by the UDPG pyrophosphorylase structural gene // Molecular and General Genetics. 1989. Vol. 217, No. 1. PP. 26-30.
Mohammadkazemi F., Doosthoseini K., Azin M. Effect of ethanol and medium on bacterial cellulose (BC) production by Gluconacetobacter xylinus (PTCC 1734) // Cellulose chemistry and technology. 2015. Vol. 49, No. 5-6. PP. 455-462.
Mohite B.V., Salunke B.K., Patil S.V. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions // Appl. Biochem. Biotechnol. 2013. Vol. 169. PP. 1497-1511.
Фан Ми Хань. Биотехнология бактериальной целлюлозы с использованием штамма -продуцента Gluconacetobacter hansenii GH - 1/2008 : дис.. канд. биол. наук. М. : Моск. гос. ун-т им. М.В. Ломоносова, 2013. 161 с.
Park J.K., Khan T., Jung J.Y. Structural studies of the glucuronic acid oligomers produced by Gluconacetobacter hansenii strain // Carbohydr. Polym. 2006. Vol. 63. PP. 482-486.
Gromovykh T.I., Feldman N.B., Timashev P.S., Kiselyova O.I., Kraeva М/N., Grinevich A.S., Tikchonova O.A., Bardakova K.N., Churbanov S.N., Lutsenko S.V. Elaboration of bacterial cellulose matrix for the immobilization of Escherichia coli cells // International Journal of Nanotechnology. 2018. Vol. 15, No. 4/5. PP. 288-300.
Pigaleva M.A., Bulat M.V., Gromovykh T.I., Gavryushina I.A., Lutsenko S.V., Gallyamov M.O., Novikov I.V., Buyanovskaya A.G., Kiselyova O.I. A new approach to purification of bacterial cellulose membranes: What happens to bacteria in supercritical media? // The Journal of Supercritical Fluids. 2019. Vol. 147. PP. 59-69.
Кашин А.С., Анаников В.П. Формирование наноразмерных покрытий и наночастиц металлов путем магнетронного распыления и их исследование методом сканирующей электронной микроскопии // Известия Академии Наук Серия Химическая. 2011. No. 12. С. 2551-2556. doi: 10.1007/s11172-011-0399-x
Coseri S., Biliuta G., Zemlji'b.E, Srndovic J.S., Larsson P.T., Strnad S., Kre”ze T., Naderic A., Lindstr'om T. One-shot carboxylation of microcrystallinecellulose in the presence of nitroxyl radicals and sodium periodate // RSC Adv. 2015. Vol. 5. PP. 8588985897.
Zhang X., Xiao N., Wang H., Liu C., Pan X. Preparation and characterization of regenerated cellulose film from a solution in lithium bromide molten salt hydrate // Polymers. 2018. Vol. 10. PP. 614-626.
Рубина М.С., Пигалева М.А., Наумкин А.В., Громовых Т.И., Васильков А.Ю. Пленки бактериальной целлюлозы, продуцированной Gluconacetobacter hansenii, как источник окисленной формы нанофибриллярной целлюлозы // Доклады Российской академии наук. Химия, науки о материалах. 2019. T. 492. С. 70-75.
Gromovykh T.I., Pigaleva M.A., Gallyamov M.O., Ivanenko I.P., Ozerova K.E., Kharitonova E.P., Bahman M., Feldman N.B., Lutsenko S.V., Kiselyova O.I. Structural organization of bacterial cellulose: the origin of anisotropy and layered structures // Carbohydrate Polymers. 2020. Vol. 237. PP. 116140-116152.