Spatial distribution of macrozoobenthos communities in a plain river of a semi-desert zone | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. № 53. DOI: 10.17223/19988591/53/7

Spatial distribution of macrozoobenthos communities in a plain river of a semi-desert zone

Current climate changes require special attention to the implementation of environmental activities in arid regions. The study of the biotic component of water bodies of such ecosystems and the patterns of their spatial distribution is an important area of scientific research. The river network of the semi-desert zone of the Russian Plain is one of the least studied lotic systems in the Lower Volga basin. In this river network, the plain Yeruslan River is of the greatest importance because it largely determines the environmental characteristics of this arid territory. Therefore, it is important to study the structural indicators and spatial dynamics of macrozoobenthos communities in the Yeruslan River. The aim of the work was to study species composition, the structural and quantitative indicators of macrozoobenthos from the source to the mouth of the Yeruslan River and to determine the conceptual belonging of the bottom communities of the plain river of the semidesert zone to a certain type of distribution. The Yeruslan River (51°18'3"N, 47°46'19''E) flows through the semi-desert zone of the Russian Plain (Volgograd region, Russia) and it is a tributary of Volgograd reservoir. The length of the Yeruslan River is 282 km, with a catchment area of 55700 km2. We collected samples of macrozoobenthos at 9 stations of the Yeruslan River (See Fig. 1) in June 2015 and July 2016. In the ripal zone, the integrated samples for quantitative macrozoobenthos analysis were taken using an Ekman-type grab sampler (surface area 25 cm2) in replicates (8X) and a handle blade trawl (0.2 m x 0.5 m). In the medial zone, samples were taken by an Ekman-type grab sampler (surface area 250 cm2) in replicates (2X). Samples were washed in the field using a mesh screen with 300-310-pm mesh size and preserved in 4% formaldehyde. At each station of the Yeruslan River, we used field analytical instruments for measuring pH and oxygen content. Water samples were taken for hydrochemical analysis at different sections of the river (See Table 1). We used the model of isolation by distance (Malecot, 1948), Monmonier’s maximum difference algorithm (Manni et al., 2004) and the Dickey-Fuller test (Dickey and Fuller, 1979) to perform statistical analysis of changes in the species structure of macrozoobenthos. The Yeruslan River flows within the geochemical province of continental salinity, which is characterized by an evaporative type of natural water regime, leading to progressive accumulation of salts. In this research, we found out that water was brackish at several stations of the river (1250-1420 mgl-1) due to water drainage of saline soils. We revealed that the Yeruslan River is polluted with nitrite nitrogen (at station 1) and phosphorus compounds (at stations 4 and 8) but concentrations of ammonium nitrogen, nitrate nitrogen, cadmium, copper, zinc and lead did not exceed the MPC. Comparative analysis has shown that from the source to the mouth of the river there are no significant changes in the speed of water velocity flow, and the physical and chemical conditions are specific for each station. In the river, we collected 132 species: 47 - Diptera, 20 - Oligochaeta, 11 - Mollusca, 11 - Grustacea, 11 - Coleoptera, 7 - Trichoptera, 7 - Heteroptera, 6 - Hirudinea, 4 - Odonata, 4 - Ephemeroptera, 1 - Lepidoptera, Hydracarina, Polychaeta and Megaloptera. The macrozoobenthos of the river is represented by limnophilic species in the upper, middle and lower reaches. This is due to the small slope of the Yeruslan River and the presence of permanent and temporary dams. In the mouth reaches, the macrozoobenthos communities included species of the Ponto-Caspian and Ponto-Azov zoogeographic complexes. At all stations of the river, Oligochaeta and Chironomidae were of high density. Also, in the river mouth, Mollusca were of high density (See Fig. 2). Statistical analysis of sequences of hydrobiological characteristics along the longitudinal gradient of the Yeruslan River using the Dickey-Fuller test showed that the presence of a stationary distribution trend with random “wandering” is typical of the series of total density and biomass of macrozoobenthos, the number of worms of the family Tubificidae, larvae of chironomids of the subfamily Tanytarsini and mayflies of the family Baetidae. For the other series of observations, the presence of a nonlinear trend is noted (See Table 3 and Fig. 3). The selection of a sequence of borders (barrier) between river communities within the ecosystem by Montmonier’s method using a matrix of species distances by the Bray-Curtis method made it possible to identify the source (station 1) with a high level of nitritic nitrogen in the water as one of the specific areas. The second most important border separates station 3 with a low content of dissolved oxygen, and the third one allocates the mouth reaches (station 9) as an independent area, where there is a cohabitation of river and reservoir species (See Fig. 4). Based on the analysis of fauna and using statistical methods, we found out that macrozoobenthos communities do not change from the source to the mouth of the river in accordance with the “the river continuum concept”. The habitat of taxa depends on local abiotic and biotic factors at each river station, therefore, we can assume that the distribution of macrozoobenthos communities, generally, corresponds to “the patch dynamics concept”. At the same time, stations 1, 3 and 9 form fairly isolated hydrogeomorphological areas, which is postulated by the concept of “the functional process zones”. It seems that the spatial distribution of macrozoobenthos communities in the Yeruslan River can be explained by a complex combination of two concepts: “the patch dynamics concept” and “the functional process zones”. This type of distribution seems to be typical of plain rivers with very low water velocity and the presence of dams. The paper contains 4 Figures, 3 Tables and 40 References. Acknowledgments: The authors thank Alexander Prokin, Cand. Sci. (Biol.), Leading Researcher of the IBIW RAS (Borok, Russia), for his help in identifying larvae and imago of Coleoptera and Heteroptera; Timur Popchenko, Researcher of the Samara Federal Research Scientifc Center RAS, Institute of Ecology of the Volga River Basin RAS (Samara, Russia), for determining the species composition of Oligochaeta; Peter Tuzovskiy, Dr. Sci. (Biol.), Leading Researcher of the IBIW RAS (Borok, Russia), for identifying Hydrachnidia; Ekaterina Kurina, Cand. Sci. (Biol.), Researcher of the Institute of Ecology and Evolution RAS (Moscow, Russia), for identifying Crustacea; Ekaterina Belozerova, Cand. Sci. (Geogr.), Researcher of Moscow State University (Moscow, Russia), for determining soil particle size distributions. This type of distribution seems to be typical of plain rivers with very low water velocity and the presence of dams. The paper contains 4 Figures, 3 Tables and 40 References. The Authors declare no conflict of interest.

Download file
Counter downloads: 313

Keywords

macrozoobenthos, lotic system, spatial distribution concepts, the Lower Volga basin

Authors

NameOrganizationE-mail
Golovatyuk Larisa V.Samara Federal Research Scientific Center, Russian Academy of Sciences; Institute of Ecology of the Volga River Basin, Russian Academy of Sciencesgollarisa@mail.ru
Mikhailov Roman A.Samara Federal Research Scientific Center, Russian Academy of Sciences; Institute of Ecology of the Volga River Basin, Russian Academy of Sciencesroman_mihaylov_1987@mail.ru
Всего: 2

References

Thorp J.H., Thoms M.C., DeLong M.D. The riverine ecosystem synthesis: biocomplexity in river networks across space and time // River Research & Applications. 2006. Vol. 22. PP. 123-147. doi: 10.1002/rra.901
Vannote R.L., Minshall G.W., Cummins K.W., Sedell J. R., Cushinget C.E. The river continuum concept // Canadian Journal of Fisheries and Aquatic Sciences. 1980. Vol. 37. PP. 130-137. doi: 10.1139/f80-017
Dokulil M.T. Potamoplankton and primary productivity in the River Danube // Hydrobiologia. 2014. Vol. 729. PP. 209-227. doi: 10.1139/f80-017
Townsend C.R. The patch dynamics concept of stream community ecology // Journal of the North American Benthological Society. 1989. Vol. 8. PP. 36-50. doi: 10.2307/1467400
Yodzis P. Competition, mortality, and community structure // Community ecology / eds by J. Diamond, T. Case. New York : Harper and Row; 1986. PP. 480-491.
Junk W.J., Wantzen K.M. The flood pulse concept: new aspects, approaches and applications-an update // Proceedings of the second international symposium on the management of large rivers for fisheries. Bangkok : Food and Agriculture Organization and Mekong River Commission, FAO Regional Office for Asia and the Pacific, 2004. PP. 117-149.
Gomi T., Sidle R.C., Richardson J.S. Understanding processes and downstream linkages of headwater streams // BioScience. 2002. Vol. 52, No. 10. PP. 905-916.
Benda L., Poff L.R., Miller D., Dunne T., Reeves G., Pollock M., Pess G. Network dynamics hypothesis: spatial and temporal organization of physical heterogeneity in rivers // BioScience. 2004. Vol. 54. PP. 413-427.
Thoms M.C., Parsons M. Identifying spatial and temporal patterns in the hydrological character of the Condamine-Balonne River, Australia, using multivariate statistics // River Research and Applications. 2003. Vol. 19. PP. 443-457.
Ward J.V., Tockner K. Biodiversity: towards a unifying theme for river ecology // Freshwater Biology. 2001. Vol. 46. PP. 807-819.
Melles S.J., Jones N.E., Schmidt B. Review of theoretical developments in stream ecology and their influence on stream classification and conservation planning // Freshwater Biology. 2012. Vol. 57. PP. 415-434. doi:10.1111/j.1365-2427.2011.02716.x
Vyas V, Bharose S., Yousuf S., Kumar A. Distribution of Macrozoobenthos in River Narmada near Water Intake Point // Journal of Natural Sciences Research. 2012. Vol. 2, No. 3. PP. 18-24.
Sharma R., Kumar A., Vyas V Diversity of Macrozoobenthos in Morand River- A Tributary of Ganjal River in Narmada Basin // International Journal of Advanced Fisheries and Aquatic Science. 2013. Vol. 1, No. 1. PP. 57-65.
Ihtimanska M., Varadinova E., Kazakov S., Hristova R., Naumova S., Pehlivanov L. Preliminary Results about the Distribution of Macrozoobenthos along the Bulgarian Stretch of the Danube River with Respect to Loading of Nutrients, Heavy Metals and Arsenic // Acta Zoologica Bulgarica. 2014. Vol. 7. PP. 165-171.
Woodward G., Hildrew A.G. Food web structure in riverine landscapes // Freshwater Biology. 2002. Vol. 47. PP. 777-798.
Winemiller K.O. Floodplain river food webs: generalizations and implications for fisheries management // Proceedings of the second international symposium on the management of large rivers for fisheries. Bangkok : RAP Publication, 2004. PP. 285-309.
Батурина Н.С. Закономерности организации речных экосистем: ретроспектива становления современных концепций (обзор) // Биология внутренних вод. 2019. No. 1. С. 3-11. doi: 10.1134/S0320965219010042
Montgomery D.R. Process domains and the river continuum concept // American Water Resources Association. 1999. Vol. 35. PP. 397-410. doi: 10.1111/j.1752-1688.1999.tb03598.x Анализ пространственного распределения сообществ макрозообентоса 145
Connor E.F., Simberloff D. The assembly of species communities: chance or competition? // Ecology. 1979. Vol. 60. PP. 1132-1140.
Шитиков В.К., Зинченко Т.Д. Статистический анализ структурной изменчивости донных сообществ и проверка гипотезы речного континуума // Водные ресурсы. 2014. Т 41, No. 5. С. 530-540.
Головатюк Л.В., Шитиков В.К., Зинченко Т.Д. Особенности пространственного распределения видовой структуры донных сообществ средней равнинной реки // Вестник Томского государственного университета. Биология. 2017. No. 40. С. 163180. doi: 10.17223/19988591/40/10
Gladyshev M.I., Kolmakova O.V, Tolomeev A.P., Anishchenko O.V., Makhutova O.N., Kolmakova A.A., Kravchuk E.S., Kolmakov VI., Sushchik N.N., Glushchenko I.A. Differences in organic matter and bacterioplankton between sections of the largest Arctic river: Mosaic or continuum? // Limnology and Oceanography. 2015. Vol. 60. PP. 13141331. doi: 10.1002/lno.10097
Доклад об особенностях климата на территории Российской Федерации за 2016 год. М. : Росгидромет, 2017. 70 с.
Руководство по гидробиологическому мониторингу пресноводных экосистем. СПб. : Гидрометеоиздат, 1992. 318 с.
Шитиков В.К., Розенберг Г.С., Зинченко Т.Д. Количественная гидроэкология: методы системной идентификации. Тольятти : Изд-во Самарского НЦ РАН, 2003. 463 с.
Энциклопедия Волгоградской области / под ред. О.В. Иншакова. Волгоград : Издатель, 2007. 446 с.
Научно-прикладной справочник : Основные гидрологические характеристики рек бассейна Нижней Волги / под ред. В.Ю. Георгиевского. Ливны : Издатель Мухаметов Г.В., 2015. 129 с.
Malecot G. Les mathematiques de l’heredite. Paris : Masson & Cie, 1948. 63 p.
Шитиков В.К., Зинченко Т.Д., Розенберг Г.С. Макроэкология речных сообществ: концепции, методы, модели. Тольятти : Кассандра, 2011.255 с.
Manni F., Guerard E., Heyer E. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm” // Human Biology. 2004. Vol. 76, No. 2. PP. 173-190. doi: 10.1353/hub.2004.0034
Dickey D.A., Fuller W.A. Distribution of the estimators for autoregressive time series with a unit root // Journal of the American Statistical Association. 1979. Vol. 74. PP. 427-431. doi: 10.2307/2286348
Legendre P., Legendre L. Numerical Ecology. Amsterdam : Elsevier Sci. BV, 2012. 1006 p.
Oksanen J., Blanchet F.G., Kindt R., Legendre P., O’Hara R.B., Simpson G.L., Solymos P., Henry M., Stevens H., Wagner H. vegan: Community Ecology Package // R package version. 2011. PP. 1-10.
Wood S.N. Generalized Additive Models: An Introduction with R, Second Edition. USA : CRC Press, 2017. 496 p.
Яковлев В.А., Ахметзянова Н.Ш., Кондратьева Т.А. Зообентос реки Казанка // Экологические проблемы малых рек Республики Татарстан / под ред. В.А. Яковлева. Казань : Фэн, 2003. С. 181-184.
Зинченко Т.Д., Головатюк Л.В., Загорская Е.П. Структурная организация сообществ макрозообентоса равнинных рек при антропогенном воздействии // Биоиндикация экологического состояния равнинных рек. М. : Наука, 2007. С. 113-128.
Головатюк Л.В. Видовой состав и структура сообществ макрозообентоса реки Сок // Особенности пресноводных экосистем малых рек Волжского бассейна / под ред. Г.С. Розенберга, Т.Д. Зинченко. Тольятти : Кассандра, 2011. С. 128-146.
Хаменкова Е.В., Тесленко В.А. Структура сообществ макрозообентоса и динамика их биомассы в реке Ола (северное побережье Охотского моря, Магаданская область) // Зоологический журнал. 2017. Т 96, No. 1. С. 619-630. doi: 10.7868/S0044513417060071
Богатов В.В., Никулина Т.В., Вшивкова Т.С. Соотношение биоразнообразия фито-и зообентоса в континууме модельной горной реки Комаровки (Приморский край, Россия) // Экология. 2010. No. 2. С. 134-140.
Geguzis R. Impact of flow energy distribution on the ecological status of rivers. Summary of doctoral dissertation. Kaunas : Akademija, 2013. 24 p.
 Spatial distribution of macrozoobenthos communities in a plain river of a semi-desert zone | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. №  53. DOI: 10.17223/19988591/53/7

Spatial distribution of macrozoobenthos communities in a plain river of a semi-desert zone | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. № 53. DOI: 10.17223/19988591/53/7

Download full-text version
Counter downloads: 865