Assessment of the relationship between chlorophyll content and biogenic elements in large lowland resevoirs
In the second half of the 20th century, with increased rates of eutrophication, universal quantitative relationships between the content of biogenic elements and chlorophyll (Chl) were obtained, which serves as a marker of algae biomass, as well as an indicator of the trophic status of water bodies. Most of these studies were performed on lakes, however, the patterns and ratios found for lakes were not always observed in reservoirs, young ecosystems with high development dynamics. Long-term studies of phytoplankton productivity are carried out in the reservoirs of the Upper Volga. These studies have shown that a direct relationship of Chl with total nitrogen (Ntot) and phosphorus (Ptot) is rarely found and is at low correlation coefficients. A more successful attempt was to indirectly assess this relationship using the ratios of Chl/Ptot and Chl/Ntot, which was named “phytoplankton response” (Vinberg, 1987) corresponding to the term “efficiency” (Kalf, Knoechel, 1978). Our first data on Chl/Ptot and Chl/Ntot in the Upper Volga reservoirs refer to 1980-1990 (Mineeva and Razgulin, 1995; Mineeva, 1993; Mineeva, 2004). At present, new data have been obtained, which have made it possible to follow long-term trends in the development of phytoplankton in the reservoirs of the Upper Volga in connection with the availability of biogenic elements under variations in the trophic status of the reservoirs. Samples were collected in August 2015-2018 at 26 stations in three large reservoirs of the Upper Volga (56°51'-58°22'N, 35°55'-38°25'E): Ivankovo, Uglich and Rybinsk reservoirs. Chlorophyll content was determined by the fluorescence method (Gol’d et al., 1986) in integral water samples taken from the surface to the bottom. Data on biogenic elements obtained at the same time by Dr Irina Stepanova are given in our joint publication (Mineeva et al., 2021). The standard software packages for a personal computer were used for statistical processing (calculation of mean values and standard error of the mean (M±mM), correlation and variation coefficients, regression equations and graphing). In this research, we revealed that nutrient content in the Upper Volga reservoirs varied within similar limits, the average Ntot/Ptot ratio was the same, and the average values of Ptot and Ntot decreased in Rybinsk reservoir. Chl content was typical of the summer phytoplankton maximum in the Upper Volga reservoirs (See Table 1). Ptot content did not change much in Ivankovo and Uglich reservoirs, but in Rybinsk reservoir it increased in 2015 and decreased in 2016. The more stable content of N , decreased a little in the cool 2017. Chl concentrations of20-30 |rg/L obtained in Rybinsk reservoir in 2015 and 2018, in Uglich reservoir in 2017 and in Ivankovo reservoir in 2015 correspond to the eutrophic category; concentrations of 35-52 μg/L (Rybinsk reservoir in 2016, Uglich reservoir in 2015, 2016 and 2018, Ivankovo reservoir in 2016-2018) - to hypertrophic category, and only in 2017 in Rybinsk reservoir did they decrease to a moderately eutrophic level of 13 μg/L (See Fig. 1). It was found out that under these conditions Chl content per unit of biogenic elements varied in a wide range: Chl/Ptot from 0,03 to 2,13, Chl/Ntot from 2,55 to 123, with maximum values in the highly eutrophic Shosha reach in Ivankovo reservoir (August 2018). Chl/Ntot slightly differed in Ivankovo and Uglich reservoirs, but increased in Rybinsk reservoir; Chl/Ptot decreased in the range of Ivankovo, Uglich and Rybinsk reservoirs (See Table 1). Most of both ratios belong to narrower limits: 0.10-0.50 for Chl/Ptot (67% of all values) and 10-40 for Chl/Ntot (51%) (See Table 2). The average Chl/Ptot ratio for the entire data set is 0.43±0.03, and Chl/Ntot is 29.8±1.9 with variation coefficients of 77.0 and 63.9%. The interannual changes (See Fig. 1) show that all the maximum ratios were obtained in 2016, while the minimum in Ivankovo reservoir was in 2015, in Rybinsk reservoir in 2015 and 2017 and in Uglich reservoir in 2017 and 2018. Our results demonstrate that both ratios correlate with each other (See Fig. 2), as well as with the Chl content (See Fig. 3). The correlation of both ratios with Chl weakens in Ivankovo reservoir, probably due to the abundant development of macrophytes. We can observe the same in all reservoirs in the cool 2017 with a decrease in ChlCyan (the abundance of cyanoprokaryotes) and an increase in the proportion of ChlBac (the abundance of diatoms). Both ratios are insignificantly dependent on hydrological factors as well as on Ptot and Ntot content, but the situation can change in individual reservoirs and in different years of observation (See Table 3). As it was demonstrated, both ratios increase with the growth of trophy estimated by Chl. They do not significantly differ in mesotrophic and moderately eutrophic waters, but become much higher in eutrophic and highly eutrophic waters, indicating a more efficient consumption of nutrients in the latter. At the same time, Ptot and Ntot change little along the Chl gradient (See Table 4). Chl/Ptot decreases with the increase in Ptot and grows slightly with the increase in Ntot; Chl/Ntot does not change over the entire range of Ptot and Ntot; but both ratios vary along the gradient of Ntot/Ptot (See Table 5) that serves as an indicator of the biogenic limitation of phytoplankton and a factor regulating the development of algae. A retrospective analysis shows significant interannual fluctuations of both ratios in Rybinsk reservoir and a tendency to increase them in Uglich and Ivankovo reservoirs (See Fig. 1). Thus, Chl/Ptot and Chl/Ntot ratios are useful for analyzing the relationship between the development of phytoplankton and nutrient supply that is necessary in order to assess the efficiency of their use and their availability to algae cells. The results obtained allow us to conclude that phytoplankton in the Upper Volga reservoirs is less sensitive to the presence of nitrogen and more dependent on phosphorus. The paper contains 3 Figures, 5 Tables and 31 References. The Author declares no conflict of interest.
Keywords
phytoplankton,
chlorophyll,
total nitrogen,
total phosphorus,
Chl/Ptot and Chl/Ntot ratios,
reservoirs of the Upper VolgaAuthors
Mineeva Natalya M. | Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences | mineeva@ibiw.ru |
Всего: 1
References
Экологические проблемы Верхней Волги / под ред. А.И. Копылова. Ярославль : ЯрГТУ, 2001. 427 с.
Китаев С.П. Основы лимнологии для гидробиологов и ихтиологов. Петрозаводск : КарНЦ РАН, 2007. 394 с.
Vollenweider R.A. Das Nachrstoffbelastungskonzept als Grundlage fur den externen in den Eutrophierungsprozess stehender Gewasser und Talsperren // Z. Wasser und Abwasser Forsch. 1979. Bd. 12 (2). SS. 46-56.
Eutrophication of waters. Monitoring, assessment and control. Paris : OECD, 1982. 155 p.
Havens K.E., Anneville O., Carvalho L., Coveney M.F., Deneke R, Dokulil M.T., Foy B., et al. Lake responses to reduced nutrient loading - an analysis of contemporary long-term data from 35 case studies // Freshwater Biol. 2005.Vol. 50, No. 9. PP. 1747-1771. doi: 10.1111/j.1365-2427.2005.01415.x
Zhukova T.V. Long-term dynamics of phosphorus in the Narochanskie Lakes and factors determining it // Water Resourses. 2013. Vol. 40, No. 5. PP. 510-517. doi: 10.1134/S0097807813050072
Hao Y., Yu R., Zhang U., Yanget H. The relationship of chlorophylla, total nitrogen and total phosphorus in Wuliangsuhai Lake // Advanced Materials Research. 2014. Vols. 955-959. PP. 1393-1396. doi: 10.4028/www.scientific.net/AMR.955-959.1393
Burson A., Stomp M., Greenwell E., Grosse J., Huisman J. Competition for nutrients and light: testing advances in resource competition with a natural phytoplankton community // Ecology. 2018. Vol. 99, No. 5. PP. 1108-1118. doi: 10.1002/ecy.2187
Xiao W., Liu X., Irwin A.J., Laws E.A., Wang L., Chen B., Zeng Y., Huang B. Warming and eutrophication combine to restructure diatoms and dinoflagellates // Water Research. 2018. Vol. 128, No. 1. PP. 206-216. doi: 10.1016/j.watres.2017.10.051
Одум Ю. Основы экологии. М. : Мир, 1975. 740 с.
Минеева Н.М., Разгулин С.М. О влиянии биогенных элементов на содержание хлорофилла в Рыбинском водохранилище // Водные ресурсы. 1995. Т. 22, No. 2. С. 218-223.
Минеева Н.М. Растительные пигменты в воде волжских водохранилищ. М. : Наука,2004. 156 с.
Винберг Г.Г. Сравнительные биолимнологические исследования, их возможности и ограничения // Продукционно-гидробиологические исследования на внутренних водоемах. Л. : Гидрометеоиздат, 1986. С. 4-18.
Kalff J., Knoechel R. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes // Ann. Rev. Ecol. Syst. 1978. Vol. 9. PP. 475-495. doi: 10.1146/annurev.es.09.110178.002355
Spears B.M., Carvalho L., Dudley B., May L. Variation in chlorophyll to total phosphorus ratio across 94 UK and Irish lakes: implications for lake management // J. Environmental Management. 2013. Vol. 115. PP. 287-294. doi: 10.1016/j.jenvman.2012.10.011
Mineeva N.M. Evaluation of nutrient-chlorophyll relationships in the Rybinsk Reservoir // Water Sci. Technol. 1993. Vol. 28, No. 6. PP. 25-28. doi: 10.2166/wst.1993.0125
Mineeva N.M. Content of photosynthetic pigments in the upper Volga reservoirs (2005-2016) // Inland Water Biology. 2019. Vol. 12, No. 2. PP. 161-169. doi: 10.1134/S199508291902010X
Mineeva N.M., Stepanova I.E., Semadeni I.V. Biogenic elements and their significance in the development of phytoplankton in reservoirs of the Upper Volga // Inland Water Biology. 2021. No. 14 (1). РР. 32-42. doi: 10.1134/S1995082921010089
Гольд В.М., Гаевский Н.А., Шатров И.Ю., Попельницкий В.А., Рыбцов С.А. Опыт использования флуоресценции для дифференциальной оценки содержания хлорофилла у планктонных водорослей // Гидробиологический журнал. 1986. Т. 22, No. 3. С. 80-85.
Корнева Л.Г. Фитопланктон водохранилищ бассейна Волги. Кострома : Костромской печатный дом; 2015. 284 с.
Kureyshevich A.V., Medved’ V.A. Assessment of relationship between the content of chlorophyll a and the content of phosphorus in the water of the Dnieper reservoirs // Hydrobiol. Journ. 2006. Vol. 42, No. 3. PP. 33-43. doi: 10.1615/HydrobJ.v42.i3.30
Jones J.R., Obrecht D.V., Perkins B.D., Knowlton M.F., Thorpe A.P., Watanabe S., Bacon R.R. Nutrients, seston and transparency of Missouri reservoirs and oxbow lakes: an analysis of regional limnology // Lake Reserv. Manage. 2008. Vol. 24, No. 6. PP. 155-180. doi: 10.1080/07438140809354058
Brown C.D., Hoyer M.V., Bachmann R.W., Canfield D.E. Nutrient-chlorophyll relationships: an evaluation of empirical nutrient-chlorophyll models using Florida and north-temperate lake data // Can. J. Fish. Aquat. Sci. 2000. Vol. 57. PP. 1574-1583. doi: 10.1139/f00-090
Søndergaard M., Lauridsen T.L., Johansson L.S., Jeppesen E. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover // Hydrobiologia. 2017. Vol. 795. PP. 35-48. doi: 10.1007/s10750-017-3110-x
Domingues R.B., Barbosa A.B., Sommer U., Galvao H.M. Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication // Aquat Sci. 2011. Vol. 73, No. 3. PP. 331-343. doi: 10.1007/s00027-011-0180-0
Marinho M.M., de Oliveira e Azevedo S.M.F. Influence of N/P ratio on competitive abilities for nitrogen and phosphorus by Microcystis aeruginosa and Aulacoseira distans // Aquat. Ecol. 2007. Vol. 41. PP. 525-533. doi: 10.1007/s10452-007-9118-y
Suttle C.A., Harrison P.J. Ammonium and phosphate uptake rates, N : P supply ratios, and evidence for N and P limitation in some oligotrophic lakes // Limnol. Oceanogr. 1988. Vol. 33, No. 2. PP. 186-202. doi: 10.4319/lo.1988.33.2.0186
Seip K.L., Jeppesen E., Jensen J.P., Faafeng B. Is trophic state or regional location the strongest determinant for Chl-a/TP relationships in lakes? // Aquat. Sci. 2000. Vol. 62. PP. 195-204. doi: 10.1007/PL00001331
Filstrup C.T., Downing J.A. Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes // Inland Waters. 2017. Vol. 7, No. 4. PP. 385-400. doi: 10.1080/20442041.2017.1375176
Jones J.R., Obrecht D.V., Thorpe A.P. Chlorophyll maxima and chlorophyll: total phosphorus ratios in Missouri reservoirs // Lake Reserv. Manage. 2011. Vol. 27. PP. 321-328. doi: 10.1080/07438141.2011.627625
Vannote R.L., Minshall G.W., Cummins K.W., Sedell J.R., Cushing C.E. The river continuum concept // Can. J. Fish. Auqat. Sci. 1980. Vol. 37, No. 1. PP. 130-137. doi: 10.1139/f80-017
Sakamoto M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth // Arch. Hydrobiol. 1966. Vol. 62, No. 1. PP. 1-28. doi: 10.1371/journal.pone.0095757
Claesson A. Research on recovery of polluted lakes. Algal growth potential and the availability of limiting nutrients // Acta University Uppsala. 1978. No. 61. PP. 1-7.
Булгаков Н.Г., Левич А.П. Биогенные элементы в среде и фитопланктон: соотношение азота и фосфора как самостоятельный фактор регулирования структуры альгоценоза // Успехи современной биологии. 1995. Т. 115, No. 1. С. 13-23.
Seip K.L., Sas H., Vermij S. Nutrient-chlorophyll trajectories across trophic gradient // Aquatic Sci. 1992. Vol. 54, No. 1. PP. 58-76.
Havens K.E., Nürnberg G.K. The phosphorus-chlorophyll relationship in lakes: potential influences of color and mixing regime // Lake and Reservoir Management. 2004. Vol. 20, No. 3. PP. 188-196. doi: 10.1080/07438140409354243