Induction of somatic embryogenesis in Siberian spruce (Picea obovata) in in vitro culture
The biotechnology of somatic embryogenesis in in vitro culture is the most promising direction in the reproduction of conifers. The use of this technology makes it possible not only to massively propagate the best genotypes of trees, but also serves a model for studying the structural, physiological and molecular and genetic mechanisms of both somatic and zygotic embryogenesis in conifers. The main aim of this research was to obtain embryogenic cultures (ECs) producing somatic embryos and embryonic suspension mass (ESM) of Picea obovata. The studies were carried out in 2014-2019 on 30 Siberian spruce trees growing in the vicinity of the city of Krasnoyarsk. To detect genotypes competent for somatic embryogenesis, new donor trees were selected every year for the experiment. 3-10 cones were collected from each tree at different stages of embryo development: globular embryo (the first decade of July), the initiation stage cotyledons (second decade of July), the stage of developed cotyledons (third decade of July) and mature embryos (August). Sterilized explants (zygotic embryos at different stages of development) were introduced into in vitro culture on basic media DCR (Gupta PK and Durzan DJ, 1985), ½LV (Litvay JD et al., 1985), MS (Murashige T and Skoog F, 1962) and AI (Tretyakova IN, 2012). All media were supplemented with myo-inositol - 100 mg/L, casein hydrolyzate - 500-1000 mg/L, L-glutamine - 500 mg/L, sucrose - 30 g/L and agar - 7 g/L. Ascorbic acid at a concentration of 400 mg/L was used as an antioxidant. The level of growth regulators was: 2,4-dichlorophenoxyacetic acid (2,4-D) - 2 mg/L and N6-benzoaminopurine (BAP) - 1 mg/L. For the proliferation of the ESM, DCR and AI basic media containing 2,4-D (2 mg/L), BAP (0.5 mg/L) and sucrose (20 g/L) were used. The pH was adjusted to pH = 5.8. All culture medium and components were sterilized depending on their termolabile properties. Under aseptic conditions, embryos were removed from megagametophytes and inoculated into nutrient media, 10 explants per flask in 25 replicates. The cultures were incubated in the dark at 24 ± 1 °C. Subcultivation to fresh nutrient medium was carried out every 14 days. To control the quality of cell lines (CL) during subculturing, we performed cytological analyzes using temporary preparations (3-5 preparations for each CL). We evaluated the quality of the embryogenicity of the cultures by the presence of even single structures with pronounced polarity - a globular embryo with a suspensor. The results of the study showed that the induction of callus cultures of Siberian spruce is influenced by such factors as the development stage of the explant, the nutrient medium and the genotype of the donor tree. The introduction of P. obovata immature zygotic embryos into in vitro culture at the stage of the globular embryo, both with megagametophytes and extracted from them, turned out to be ineffective. The induction of callus cultures in Siberian spruce was significantly reduced when mature zygotic embryos were introduced into the culture in vitro. The highest response of explants of Siberian spruce was at the stage of developed cotyledons (See Table 1). In the DCR medium, 90% of explants formed callus (See Table 2). The mineral composition of the media did not significantly affect the induction of callus formation in Siberian spruce. The exception was the MS medium, in which callus cultures were formed only in 41% of explants (See Table 2). The growth of callus cultures was most active in the DCR medium. After 6 months of cultivation, 15-32% of calli remained viable (See Table 2). Cytological analysis of callus cultures showed that they include cells of different types (See Fig. 1 and 2). The first type of cells consisted of elongated cells reaching a length of 10 ± 3 μm, others consisted of isodiametric cells with a diameter of 60 ± 3.5 μm. The somatic embryo globule and embryonic tubes were formed from elongated cells. Isodiametric cells were actively dividing and forming callus. Only 3 cell lines (out of 300 cell lines) belonging to two donor trees had an active ability to proliferate. Globular somatic embryos were actively forming in these cell lines (See Fig. 3). An actively proliferating ESM was formed. Thus, we carried out a comprehensive assessment of the factors influencing the induction of somatic embryogenesis in Siberian spruce. The results obtained indicate that for the successful formation of somatic embryos, the determining factor is not only the choice of donor plants, but also the development stage of the explant. We found that the best stage in the development of zygotic embryos when introduced into in vitro culture of Siberian spruce is the stage of immature embryos with formed cotyledons, while the DCR, /LV and AI nutrient medium supplemented with growth regulators (2.4-D and BAP) is optimal. The paper contains 3 Figures, 2 Tables and 41 References.
Keywords
Picea obovata,
in vitro,
callus,
embryogenic cultures,
stage of explant development,
nutrient medium,
donor tree,
somatic embryogenesisAuthors
Tretyakova Iraida N. | V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences; Siberian Federal University | culture@ksc.krasn.ru |
Park Maria E. | V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences | mtavi@bk.ru |
Pakhomova Angelica P. | V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences | culture@ksc.krasn.ru |
Sheveleva Irina S. | Siberian Federal University | culture@ksc.krasn.ru |
Muratova Elena N. | V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences | culture@ksc.krasn.ru |
Всего: 5
References
Фирсов Г.А., Орлова Л.В. Хвойные в Санкт-Петербурге. СПб. : Дом садовой литературы, 2019. 492 с.
Железниченко Т.В., Новикова Т.И. Влияние аскорбиновой кислоты и глутатиона на индукцию соматического эмбриогенеза Picea pungens Engelmann // Turczaninowia. 2017. Т 20, № 3. С. 27-35.
Chalupa W. Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) // Karst. Com. Inst. For. Cech. 1985. Vol. 14. P. 57.
Hakman I., Fowke L.C., von Arnold S. The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce) // Plant Sci. 1985. Vol. 38. PP. 53-59. doi: 10.1016/0168-9452(85)90079-2
Arnold S. von, Clapham D., Egertsdotter U., Mo L.H. Somatic embryogenesis in conifers-a case study of induction and development of somatic embryos in Picea abies // Plant Growth Regulation. 1996. Vol. 20, № 1. PP. 3-9. doi: 10.1007/BF00024050
Stasolla C., Yeung E.-С. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality // Plant Cell, Tissue and Organ Culture. 2003. Vol. 74, PP. 15-35. doi: 10.1023/A:1023345803336
Hakman I., Rennie P., Fowke L.C. A light and electron microscopy study of Picea glauca (white spruce) somatic embryos // Protoplasma. 1987. Vol. 140. PP. 100-109. doi: 10.1007/ BF01273718
Dunstan D.I., Bekkaoui F., Pilon M., Fowke L.C., Abram S.R. Effects of abscisic acid and analogues on the maturation of white spruce (Picea glauca) somatic embryos // Plant Sci. 1988. Vol. 58, PP. 77-84. doi: 10.1016/0168-9452(88)90156-2
Gupta P.K., Durzan D.J. Plantlent regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea abies (Norway spruce) // In Vitro Cell. Dev. Biol. 1986. Vol. 22. PP. 685-688.
Mauleova M., Vftamvas J. Differential success of somatic embryogenesis in random gene pool of Norway spruce // J. For. Sci. 2007. Vol. 53, № 2. PP. 74-87.
Afele J.C., Senaratna T., McKersie B.D., Saxena P.K. Somatic embryogenesis and plant regeneration from zygotic embryo culture in blue spruce (Picea pungens Engelman.) // Plant cell reports. 1992. Vol. 11, № 5-6. PP. 299-303. doi: 10.1007/BF00235086
Afele J.C., Saxena P.K. Somatic embryogenesis in blue spruce (Piceapungens Engelmann) //Somatic embryogenesis in woody plants. Springer, Dordrecht. 1995. PP. 99-109. doi: 10.1007/978-94-011-0960-4_7
Roberts D.R., Sutton B.C.S., Flinn B.S. Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity // Canadian Journal of Botany. 1990. Vol. 68, № 5. PP. 1086-1090. doi: 10.1139/b90-136
Tret’yakova I.N., Park M.E. Somatic polyembriogenesis of Larix sibirica in embryogenic in vitro culture // Russian Journal of Developmental Biology. 2018. Vol. 49, № 4. PP. 222233. doi: 10.1134/S1062360418040069
Vondrakova Z., Dobrev P. I., Pesek B., Fischerova L., Vagner M., Motyka, V Profiles of endogenous phytohormones over the course of Norway spruce somatic embryogenesis // Frontiers in Plant Science. 2018. Vol. 9. P. 1283. doi: 10.3389/fpls.2018.01283
Tretyakova I.N., Kudoyarova G.R., Park M.E., Kazachenko A.S., Shuklina A.S., Akhiyarova G.R., Korobova A.V Veselov S.U. Content and immunohistochemical localization of hormones during in vitro somatic embryogenesis in long-term proliferating Larix sibirica cultures // Plant Cell, Tissue and Organ Culture. 2019. Vol. 136, № 3. PP. 511-522. doi: 10.1007/s11240-018-01533-y
Dong J.-Z., Dunstan D.I. Molecular biology of somatic embryogenesis in conifers // In: Molecular Biology of Woody Plants Vol. 1. Jain SM & Minocha SC (eds). The Netherland, Dordrecht: Kluwer Academic Publishers, 2000. PP. 51-87. doi: 10.1007/978-94-017-2311-4_3
MacKay J., Becwar M., Park V-S., Corderro J.P., Pullman G.S. Genetic control of somatic embryogenesis initiation in loblolly pine and implication for breeding // Tree Genetics & Genomes. 2006. Vol. 2, № 1. PP. 1-9. doi: 10.1007/s11295-005-0020-2
Cairney J., Pullman G. The cellular and molecular biology of conifer embryogenesis // New Phytologist. 2007. Vol. 176. PP. 511-536. doi: 10.1111/j.1469-8137.2007.02239.x
Zhang L., Li W.F., Xu H.Y., Qi L.W., Han S.Y. Cloning and characterization of four differentially expressed c DNAs encoding NEYA homologs involved in response to ABA during somatic embryogenesis in Japanese lurch (Larix leptolepis) // Plant Cell, Tissue and Organ Culture. 2014. Vol. 117. PP. 293-304. doi: 10.1007/s11240-014-0440-5
Li S., Li W., Han S., Yang W., Qi L. The post-transcriptional regulation of LaSCL6 by miR 171 during maintenance of embryogenic potential in Larix kampferi (Lamb) // Carr Tree Genetics and Genomacs. 2014. Vol. 100, № 1. PP. 223-229. doi: 10.1007/s11295-013-0668-y
Li S., Li W., Han S., Li W., Xu H., Yang W., Lin Y., Fan Y., Qi I. Over-expression of mi R166a inhibits cotyledons formation in somatic embryos and promotes lateral root development in seedlings of Larix leptolepis // Plant Cell, Tissue and Organ Culture. 2016. Vol. 127, № 2. PP. 461-473. doi: 10.1007/s11240-016-1071-9
Rupps A., Rasche J., Rummler V, Linke B., Zoglauer K. Identification of putative homologs of Larix decidua to Baby Boom (BBM) LeafyCotyledon1 (LEG1),Wuschel-related Homeobox2 (WOX2) and Somatic Embryogenesis Receptor-like Kinase (SERK) during somatic embryogenesids // Planta. 2016. Vol. 243, № 2. PP. 473-478. doi: 10.1007/ s00425-015-2409-y
Gupta P.K., Durzan D.J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana) // Plant Cell Reports. 1985. Vol. 4, № 4. PP. 177-179. doi: 10.1007/BF00269282
Litvay J.D., Verma D.C., Johnson M.A. Influence of loblolly pine (Pinus taeda) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota) // Plant Cell Reports. 1985. Vol. 4. PP. 325-328. doi: 10.1007/BF00269890
Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol. Plant. 1962. Vol. 15, № 4. PP. 473-497.
Третьякова И.Н. Способ микроклонального размножения лиственницы сибирской в культуре in vitro через соматический эмбриогенез на среде АИ для плантационного лесовыращивания // Патент RU 2 456 344 C2. Российская Федерация. МПК: C12N 5/04 A01H 4/00; Заявка № 2010114891/10; заявлено 13.04.2010; опубликовано 20.07.2012. Бюл. 2012. № 20. 7 с. URL: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPA T&DocNumber=2456344&TypeFile=html
Ramarosandratana A.V., Van Staden J. Effects of auxins and 2, 3, 5-triiodobenzoic acid on somatic embryo initiation from Norway spruce zygotic embryos (Picea abies) // Plant cell, tissue and organ culture. 2004. Vol. 79, № 1. PP. 105-107. doi: 10.1023/B:TICU.0000049446.77837.d7
Krogstrup P. Embryolike structures from cotyledons and ripe embryos of Norway spruce (Picea abies) // Canadian Journal of Forest Research. 1986. Vol. 16, № 3. PP. 664-668. doi: 10.1139/x86-116
Lelu M.-A., Bornman C.H. Induction of somatic embryogenesis in excised cotyledons of Picea abies and Picea mariana // Plant Physiol. Biochem. 1990. Vol. 28. PP. 785-791.
Webb D.T., Webster F., Flinn B.S., Roberts D.R., Ellis D.D. Factors influencing the induction of embryogenic and caulogenic callus from embryos of Picea glauca and P. engelmanii // Canadian Journal of Forest Research. 1989. Vol. 19, № 10. PP. 1303-1308. doi: 10.1139/ x89-200
Liao Y.K., Liao C.K., Ho Y.L. Maturation of somatic embryos in two embryogenic cultures of Picea morrisonicola Hayata as affected by alternation of endogenous IAA content // Plant Cell, Tissue and Organ Culture. 2008. Vol. 93. PP. 257-268. doi: 10.1007/s11240-008-9371-3
Arnold S.V., Eriksson T. In vitro studies of adventitious shoot formation in Pinus contorta // Canadian Journal of Botany. 1981. Vol. 59, № 5. PP. 870-874. doi: 10.1139/b81-121
Jain S.M., Newton R.J., Soltes E.J. Enhancement of somatic embryogenesis in Norway spruce (Picea abies L.) // Theoretical and Applied Genetics. 1988. Vol. 76, № 4. PP. 501506. doi: 10.1007/BF00260899
Klimaszewska K., Lachance D., Pelletier G., Lelu M.A., Seguin A. Regeneration of transgenic Picea glauca, P. mariana, and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens // In Vitro Cellular and Developmental Biology. 2001. Vol. 37, № 6. PP. 748-755. doi: 10.1007%252Fs11627-001-0124-9
Vagner M., Vondrakova Z., Strnadova Z., Eder J., Machackova I. Endogenous levels ofplant growth hormones during early stages of somatic embryogenesis of Picea abies // Advances in horticultural science. 1998. PP. 11-18. URL: https://www.jstor.org/stable/42881908
Arnold S. von, Egertsdotter U., Ekberg I., Gupta P.K., Mo H. Somatic embryogenesis in Norway spruce (Picea abies) // In: Somatic Embryogenesis in Woody Plants. The Netherland, Dordrecht: Kluwer Academic Publishers; 1995. Vol. 3. PP. 17-36. doi: 10.1007/978-94-011-0960-4_2
Filonova L.H., Bozhkov P.V., Arnold S. von. Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking // Journal of Experimental Botany. 2000. Vol. 51. PP. 249-264. doi: 10.1093/jexbot/51.343.249
Tret’yakova I.N., Barsukova A.V. Somatic embryogenesis in in vitro culture of three larch species // Russ J Developmental Biology. 2012. Vol. 43, №. 6. PP. 353-361. doi: 10.1134/ S1062360412060082
MacKay J. Becwar M., Park Y, Perfetti C., Cordero J., Pullman G., Lockhart L. Genetics of somatic embryogenesis in loblolly pine // In: Proccedings (publ no 48) 26th southern forest tree improvement Conference. Deab J.F.(ed). University of Georgia Altehens. 2001. PP. 40-47.
MacKay J., Becwar M., Park V.-S., Corderro J.P., Pullman G.S. Genetic control of somatic embryogenesis initiation in loblolly pine and implication for breeding // Tree Genetics & Genomes. 2006. Vol. 2, № 1. PP. 1-9. doi: 10.1007/s11295-005-0020-2