Comparative evaluation of the effect of resveratrol and carnitine on the full transcriptomic profile of liver tissue in mice with different sensitivity to the development of alimentary obesity | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. № 54. DOI: 10.17223/19988591/54/5

Comparative evaluation of the effect of resveratrol and carnitine on the full transcriptomic profile of liver tissue in mice with different sensitivity to the development of alimentary obesity

Specialized food products and biologically active food supplements enriched with minor biologically active substances are considered as a useful supplement in the treatment of obesity and other nutrition-dependent diseases. Biologically active substances of food can have a complex effect on the expression of a large number of genes, which can affect the results of a therapy. The aim of the study was to analyze the nutrigenomic mechanisms of the effect of biologically active substances - l-carnitine and resveratrol on the expression of liver genes of DBA/2J mice and DBCB tetrahybrid, differing in genotype and sensitivity to the development of diet-induced obesity, using the method of full transcriptomic profiling of liver tissue. We carried out the experiment on male DBA/2J mice and the hybrid of the 2nd generation DBCB, obtained by crossing 4 lines of mice (DBA/2J, BALB/c, CBA/ lac and С57Black/6J). Mice for the experiment were obtained from Stolbovaya nursery, Federal State Budgetary Scientific Institution Scientific Center of Biomedical Technologies of the Federal Medical-Biological Agency (Moscow region, Russia). We worked with animals in accordance with international recommendations (Directive 2010/63/EU on the protection of animals used for scientific purposes adopted on September 22, 2010; Guide for the care and use of laboratory animals. Eighth Edition / Committee for the Update of the Guide for the Care and Use of Laboratory Animals; Institute for Laboratory Animal Research (ILAR); Division on Earth and Life Studies (DELS); National Research Council of the National Academies. Washington: The National Academies Press. 2011).The mice were divided into four groups with an equal number of 8 individuals. During 65 days, animals of the 1st (control) groups received a balanced semi-synthetic diet and purified drinking water, the 2nd groups received a high- carbohydrate and high-fat diet with a high fat content (30% by of dry matter of the diet) and replacing drinking water by 20% fructose solution, 3rd groups - high-carbohydrate and high-fat diet with the addition of resveratrol at a dose of 25 mg/kg body weight, 4th groups - high-carbohydrate and high-fat diet with the addition of l-carnitine at a dose of 300 mg/kg body weight. Full transcriptome analysis was performed using the Gene Expression Hybridization Kit (Agilent Technologies, USA) on SurePrint G3 Mouse GE 8*60K Microarray Kit microarrays. Differential gene expression was expressed as base 2 logarithm of increasing or decreasing fluorescence (log2FC) compared to control groups, separately for DBA/2J and DBCB mice. Chip scan data and calculation of differential expression values were exported to the “R” IDE and bioinformatics analysis was performed with quantile normalization and further analysis in the limma package. The packages AnnotationDbi, org.Rn.eg.db, pathview, gage, gageData were used to identify metabolic pathways among the genes, metabolic pathways and functions of biological systems presented in the international database Kyoto Encyclopedia of Genes and Genomes and to visualize them. To visualize the results at all stages, the standard “R” graphics and additional packages ggplot2, ggrepel, and gplots were used. Liver morphology was studied by light microscopy after staining with hematoxyline-eosine (See Fig. 1). We revealed differential expression for at least one of the intergroup comparisons in the amount of |log2FC|>0.5 (towards both enhancement and attenuation) and at a p-value < 0.05 for 415 transcripts, of which 311 were identified with proteins or RNA with a known function (See Tables 1-3). Consumption of a high-carbohydrate and high-fat diet was reflected in differential expression of 62 genes in DBA/2J mice and 97 in DBCB mice. In DBA/2J mice fed on a high-carbohydrate and high-fat diet, supplementation with resveratrol and l-carnitine caused a differential expression of 26 genes each. At the same time, only 2 genes (Pklr, Tkfc) responded to resveratrol and l-carnitine in mice of this strain. In DBCB tetrahybrid mice, resveratrol consumption corresponded to differential expression of 147 genes, and l-carnitine consumption corresponded to 221 genes. 61 genes from DBCB mice responded to both supplements, and the number of genes simultaneously targeted by high-carbohydrate and high-fat diets, resveratrol and l-carnitine was 10 (See Fig. 2). The gene expression profiles in DBA/2J and DBCB mice formed two separate clusters, the differences within which, determined by the composition of the diets, were less significant than the interstrain differences (See Fig. 3). Differential expression values in DBCB and DBA mice responding to HFCD and both supplements correlated negatively (See Fig. 4). The consumption of a high-carbohydrate and high-fat diet in DBA/2J mice resulted in significant changes in 4 metabolic pathways, and in DBCB mice, in addition, in 5 more metabolic pathways. Resveratrol consumption did not cause significant changes in DBA/2J mice, and in tetrahybrid mice it affected mmu04512 ECM-receptor interaction. L-carnitine supplementation caused significant changes in mmu00830 Retinol metabolism only in DBCB mice (See Table 4). Consumption of a high-carbohydrate and high-fat diet produced similar changes in the mmu00830 Retinol metabolism pathway in both mice (See Fig. 5). In metabolic pathway mmu03320 PPAR signaling pathway DBA/2J and DBCB mice showed positive differential expression of the PPARy gene and negative Scd1. At the same time, only DBCB mice in this metabolic pathway are characterized by activation of the RXR gene expression and suppression of FABP, and the direction in changing Cyp4a1 in both mice is opposite (See Fig. 6). Changes in the metabolic pathway mmu00590 Arachidonic acid metabolism characterized by the imbalance in the expression of Cyp4a and Cyp2 isoforms, which are responsible for the synthesis of various hydroxy and epoxy derivatives of arachidonic acid, is characteristic only of DBCB mice (See Fig. 7). Thus, the experiments performed revealed both a certain similarity and differences in the response of the transcriptome of DBA/2J and DBCB mice to the consumption of a high-carbohydrate and high-fat diet, resveratrol and l-carnitine. The mechanisms that determine the direction of changes induced in the transcriptome of mice (and in coupled phenotypic changes) are, apparently, in the intervention of the studied dietary factors in key metabolic pathways, such as the PPAR signaling pathway, the metabolism of retinoids and eicosanoids. The data obtained indicate the importance of an adequate choice of a in vivo model of obesity and metabolic syndrome in preclinical studies of biologically active substances, in diet therapy and the enrichment of specialized food products with them. The paper contains 7 Figures, 4 Tables and 52 References. The Authors declare no conflict of interest.

Download file
Counter downloads: 83

Keywords

transcriptome, gene expression, biologically active substances, mice, obesity

Authors

NameOrganizationE-mail
Trusov Nikita V.Federal Research Centre of Nutrition, Biotechnology and Food Safetynikkitosu@yandex.ru
Apryatin Sergey A.Institute of Experimental Medicineapryatin@mail.ru
Timonin Andrej N.Federal Research Centre of Nutrition, Biotechnology and Food Safetyandrey8407@mail.ru
Shipelin Vladimir A.Federal Research Centre of Nutrition, Biotechnology and Food Safety; Plekhanov Russian University of Economicsv.shipelin@yandex.ru
Gmoshinski Ivan V.Federal Research Centre of Nutrition, Biotechnology and Food Safetygmosh@ion.ru
Nikityuk Dmitriy B.Federal Research Centre of Nutrition, Biotechnology and Food Safety; I.M. Sechenov First Moscow State Medical Universitynikitjuk@ion.ru
Всего: 6

References

Тутельян В.А., Киселёва Т.Л., Кочеткова А.А., Смирнова Е.А., Киселёва М.А., Саркисян В.А. Перспективные источники фитонутриентов для специализированных пищевых продуктов с модифицированным углеводным профилем: опыт традиционной медицины // Вопросы питания. 2016. Т 84, № 4. С. 46-60.
Тутельян В.А., Кочеткова А.А., Саркисян В.А. Специализированные пищевые продукты в современной парадигме алиментарной коррекции нарушений метаболома // FOODLIFE 2018. Генетические ресурсы растений и здоровое питание: потенциал зерновых культур : материалы конференции. 2018. С. 22.
Bojanowska E., Ciosek J. Can we selectively reduce appetite for energy-dense foods? An overview of pharmacological strategies for modification of food preference behavior // Current Neuropharmacology. 2016. Vol. 14, № 22. PP. 118-142. https://doi.org/10.2174/15 70159x14666151109103147
Rauf A., Imran M., Suleria H.A.R., Ahmad B., Peters D.G., Mubarak M.S. A comprehensive review of the health perspectives of resveratrol // Food and Function. 2017. Vol. 8, № 12. PP. 4284-4305. https://doi.org/10.1039/c7fo01300k
Repossi G., Das U., Eynard A.R. Molecular basis of the beneficial actions of resveratrol // Archives of Medical Research. 2020. Vol. 51, № 2. PP. 105-114. https://doi.org/10.1016/). arcmed.2020.01.010
Alam Md.A., Kauter K., Withers K., Sernia C., Brown L. Chronic l-arginine treatment improves metabolic, cardiovascular and liver complications in diet-induced obesity in rats // Food and Function. 2013. Vol. 4, № 1. PP. 83-91. https://doi.org/10.1039/c2fo30096f
Раджабкадиев Р.М., Коростелева М.М., Евстратова В.С., Никитюк Д.Б., Ханферьян Р.А. L-карнитин: свойства и перспективы применения в спортивной практике // Вопросы питания. 2015. Т 84, № 3. С. 4-12.
Brass E.P. Carnitine and sports medicine: use or abuse? // Annals of the New York Academy of Sciences. 2004. Vol. 1033, № 1. PP. 67-78. https://doi.org/10.1196/annals.1320.006
Поварова О.В., Городецкая Е.А., Каленикова Е.И., Медведев О.С. Метаболические маркеры и окислительный стресс в патогенезе ожирения у детей // Российский вестник перинатологии и педиатрии. 2020. Т 65, № 1. С. 22-29.
Christenson J., Whitby S.J., Mellor D., Thomas J., McKune A., Roach P.D., Naumovski N. The effects of resveratrol supplementation in overweight and obese humans: a systematic review of randomized trials // Metabolic syndrome and related disorders. 2016. Vol. 14, № 7. PP. 323-33. https://doi.org/10.1089/met.2016.0035
Pooyandjoo M., Nouhi M., Shab-Bidar S., Djafarian K., Olyaeemanesh A. The effect of L-carnitine on weight loss in adults: a systematic review and meta-analysis of randomized controlled trials // Obesity Reviews. 2016. Vol. 17, № 10. PP. 970-976. https://doi.org/10.1111/obr.12436
Nadler S.T., Stoehr J.P., Schueler K.L., Tanimoto G., Yandell B.S., Attie A.D. The expression of adipogenic genes is decreased in obesity and diabetes mellitus // Proceedings of the National Academy of Sciences of the United States of America. 2000. Vol. 97, № 21. PP. 11371-11376. https://doi.org/10.1073/pnas.97.21.11371
Apryatin S.A., Shipelin V A., Trusov N.V., Mzhelskaya K.V., Evstratova V. S., Kirbaeva N.V., Soto J.S., Fesenko Z.S., Gainetdinov R.R., Gmoshinski I.V Comparative analysis of the influence of a high-fat/high-carbohydrate diet on the level of anxiety and neuromotor and cognitive functions in Wistar and DAT-KO rats // Physiological Reports. 2019. Vol. 7, № 4. e13987. https://doi.org/10.14814/phy2.13987
Apryatin S.A., Trusov N.V., Gorbachev A.Yu., Naumov V.A., Balakina A.S., Mzhel’skaya K.V., Gmoshinski I.V. Comparative whole transcriptome profiling of liver tissue from Wistar rats fed with diets containing different amounts of fat, fructose, and cholesterol // Biochemistry (Moscow). 2019. Vol. 84. PP. 1093-1106. https://doi.org/10.1134/S0006297919090128
Apryatin S.A., Trusov N.V., Gorbachev A.J., Naumov V.A., Mzhel’skaya K.V., Balakina A.S., Gmoshinski I.V. Full transcriptome profiling of the liver of fat-, fructose and cholesterol-fed C57Black/6J Mice // Russian Journal of Genetics. 2019. Vol. 55, № 4. PP. 399-410. https://doi.org/10.1134/S1022795419040021
Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing // Journal of the Royal Statistical Society. Series B (Methodological).1995.Vol.57, № 1.PP.289-300.https://doi.org/10.1111/j.2517-6161.1995. tb02031.x
Трусов Н.В., Мжельская К.В., Шипелин В.А., Шумакова А.А., Тимонин А.Н., Ригер Н.А., Апрятин С.А., Гмошинский И.В., Никитюк Д.Б. Влияние l-карнитина на иммунологические, интегральные и биохимические показатели мышей, получающих рацион с избытком жира и фруктозы // Российский физиологический журнал им. И.М. Сеченова. 2019. Т 105, № 5. С. 619-633. https://doi.org/10.1134/S0869813919050121
Апрятин С.А., Мжельская К.В., Трусов Н.В., Балакина А.С., Сото Х.С., Бекетова Н.А., Кошелева О.В., Гмошинский И.В., Никитюк Д.Б. Биохимические и морфологические показатели инбредных/аутбредных линий и тетрагибрида DBCB мышей в высокосахарозной in vivo модели метаболического синдрома // Бюллетень экспериментальной биологии и медицины. 2018. Т 166, № 7. С. 107-113.
Информация фирмы Agilent. URL: https://www.agilent.com/en/product/gene-expression-microarray-platform/gene-expression-exon-microarrays/model-organism-microarrays/sureprint-g3-mouse-gene-expression-microarrays-228472#zoomELIBRARY_669002, (дата обращения: 05.09.2020).
Gao M., Ma Y, Liu D. High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice // PLoS ONE. 2015. Vol. 10, № 3. e0119784. https://doi.org/10.1371/journal.pone.0119784
Sato M., Kawakami T., Kondoh M., Takiguchi M., Kadota Y., Himeno S., Suzuki S. Development of high-fat-diet-induced obesity in female metallothionein-null mice // FASEB Journal. 2010. Vol. 24, № 7. PP. 2375-2384. https://doi.org/10.1096/fj.09-145466
Dos Santos Rocha P.B., de Castro Amorim A., de Sousa A.F., do Monte S.J., da Mata Sousa L.C., do Nascimento Nogueira N., Neto J.M., do Nascimento Marreiro D. Expression of the zinc transporters genes and metallothionein in obese women // Biological Trace Element Research. 2011. Vol. 143, № 2. PP. 603-611. https://doi.org/10.1007/s12011-010-8887-7
Ma S., Rubin B.P. Apoptosis-associated tyrosine kinase 1 inhibits growth and migration and promotes apoptosis in melanoma // Laboratory Investigation. 2014. Vol. 94, № 4. PP. 430-438. https://doi.org/10.1038/labinvest.2014.13
Xin Y, Li C., Guo Y., Xiao R., Zhang H., Zhou G. RNA-Seq analysis reveals a negative role of MSMO1 with a synergized NSDHL expression during adipogenesis of 3T3-L1 // Bioscience, Biotechnology, and Biochemistry. 2019. Vol. 83, № 4. PP. 641-652. https://doi.org/10.1080/09168451.2018.1559719
Burhans M.S., Flowers M.T., Harrington K.R., Bond L.M., Guo C.A., Anderson R.M., Ntambi J.M. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation // Journal of Lipid Research. 2015. Vol. 56, № 2. PP. 304-318. https://doi.org/10.1194/jlr. M054429
Hall J.M., Powell H.R., Rajic L., Korach K.S. The role of dietary phytoestrogens and the nuclear receptor PPARy in adipogenesis: an in vitro study // Environmental Health Perspectives. 2019. Vol. 127, № 3. е37007. https://doi.org/10.1289/EHP3444
Welch R.D., Billon C., Kameric A., Burris T.P., Flaveny C.A. Rev-erba heterozygosity produces a dose-dependent phenotypic advantage in mice // PLoS One. 2020. Vol. 15, № 5. e0227720. https://doi.org/10.1371/journal.pone.0227720
Napolitano A., van der Veen A.G., Bunyan M., Borg A., Frith D., Howell S., Kjaer S., Beling A., Snijders A.P., Knobeloch K.P., Frickel E.M. Cysteine-reactive free ISG15 generates IL-1P-producing CD8a + dendritic cells at the site of infection // Journal of Immunology. 2018. Vol. 201, № 2. PP. 604-614. https://doi.org/10.4049/jimmunol.1701322
Xu Y, Knipp G.T., Cook T.J. Expression of CYP4A isoforms in developing rat placental tissue and rat trophoblastic cell models // Placenta. 2005. Vol. 26б, № 2-3. PP. 218-225. https://doi.org/10.1016/j.placenta.2004.05.006
Kocarek T.A., Duanmu Z., Fang H.L., Runge-Morris M. Age- and sex-dependent expression of multiple murine hepatic hydroxysteroid sulfotransferase (SULT2A) genes // Biochemical Pharmacology. 2008. Vol. 76, № 8. PP. 1036-1046. https://doi.org/10.1016/j. bcp.2008.07.032
van Tienen F.H.J, Laeremans H., van der Kallen C.J.H., Smeets H.J.M. Wnt5b stimulates adipogenesis by activating PPARgamma, and inhibiting the beta-catenin dependent Wnt signaling pathway together with Wnt5a // Biochemical and Biophysical Research Communications. 2009. Vol. 387, № 1. PP. 207-211. https://doi.org/10.1016/j. bbrc.2009.07.004
Fidaleo M., Amauld S., Clemencet M.C., Chevillard G., Royer M.C., De Bruycker M., Wanders R.J.A., Athias A., Gresti J., Clouet P, Degrace P., Kersten S., Espeel M., Latruffe N., Nicolas-Frances V, Mandard S. A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPARa-mediated upregulation of SREBP-2 target genes in the liver // Biochimie. 2011. Vol. 93, № 5. PP. 876-891. https://doi.org/10.1016/). biochi.2011.02.001
Tsuchida T., Fukuda S., Aoyama H., Taniuchi N., Ishihara T., Ohashi N., Sato H., Wakimoto K., Shiotani M., Oku A. MGAT2 deficiency ameliorates high-fat diet-induced obesity and insulin resistance by inhibiting intestinal fat absorption in mice // Lipids in Health and Disease. 2012. Vol. 11. е75. https://doi.org/10.n86/1476-5nX-11-75
Ham M., Sik S.C., Shin K.C., Choi G., Kim J.W., Noh J.R., Kim Y.H., Ryu J.W., Yoon K.H., Lee C.H., Kim J.B. Glucose-6-phosphate dehydrogenase deficiency improves insulin resistance with reduced adipose tissue inflammation in obesity // Diabetes. 2016. Vol. 65, № 9. PP 2624-2638. https://doi.org/10.2337/db16-0060
Keiran N., Ceperuelo-Mallafre V, Calvo E., Hernandez-Alvarez M.I., Ejarque M., Nunez-Roa C., Horrillo D., Maymo-Masip E., Rodriguez M.M., Fradera R., de la Rosa J.V., Jorba R., Megia A., Zorzano A., Medina-Gomez G., Serena C., Castrillo A., Vendrell J., Fernandez-Veledo S. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity // Nature Immunology. 2019. Vol. 20, № 5. PP. 581-592. https://doi.org/10.1038/s41590-019-0372-7
Hughes M.F., Edwards B.C., Herbin-Davis K.M., Saunders J., Styblo M., Thomas D.J. Arsenic (+3 oxidation state) methyltransferase genotype affects steady-state distribution and clearance of arsenic in arsenate-treated mice // Toxicology and Applied Pharmacology. 2010. Vol. 249, № 3. PP. 217-223. https://doi.org/10.1016/j.taap.2010.09.017
Imaoka S., Wedlund P.J., Ogawa H., Kimura S., Gonzalez F.J., Kim H.Y. Identification of CYP2C23 expressed in rat kidney as an arachidonic acid epoxygenase // The Journal of Pharmacology and Experimental Therapeutics. 1993. Vol. 267, № 2. PP. 1012-1016.
Peng Y, Rideout D., Rakita S., Lee J., Murr M. Diet-induced obesity associated with steatosis, oxidative stress, and inflammation in liver // Surgery for Obesity and Related Diseases. 2012. Vol. 8, № 1. PP. 73-81. https://doi.org/10.1016/j.soard.2011.07.019
Katsuoka F., Motohashi H., Ishii T., Aburatani H., Engel J.D., Masayuki Y Genetic evidence that small maf proteins are essential for the activation of antioxidant response element-dependent genes // Molecular and Cellular Biology. 2005. Vol. 25, № 18. PP. 8044-8051. https://doi.org/10.1128/MCB.25.18.8044-8051.2005
Xia C., Razavi M., Rao X., Braunstein Z., Mao H., Toomey A.C., Wang Y, Simon D.I., Zhao S., Rajagopalan S., Zhong J. MRP14 enhances the ability of macrophage to recruit T cells and promotes obesity-induced insulin resistance // International Journal of Obesity. 2019. Vol. 43, № 12. PP. 2434-2447. https://doi.org/10.1038/s41366-019-0366-4
Pei H., Yao Y., Yang Y, Liao K., Wu J.R. Kruppel-like factor KLF9 regulates PPARy transactivation at the middle stage of adipogenesis // Cell Death and Differentiation. 2011. Vol. 18, № 2. PP. 315-327. https://doi.org/10.1038/cdd.2010.100
Nahon J.E., Hoekstra M., van Harmelen V, Rensen P.C.N., van Dijk W.K., Kooijman S., Van Eck M. Proteoglycan 4 deficiency protects against glucose intolerance and fatty liver disease in diet-induced obese mice // Biochimica et Biophysica Acta. Molecular Basis of Disease. 2019. Vol. 1865, № 2. PP. 494-501. https://doi.org/10.1016/j.bbadis.2018.11.009
Degenhardt T., Matilainen M., Herzig K.H., Dunlop T.W., Carlberg C. The insulin-like growth factor-binding protein 1 gene is a primary target of peroxisome proliferator-activated receptors // The Journal of Biological Chemistry. 2006. Vol. 281, № 51. PP. 39607-39619. https://doi.org/10.1074/jbc.M605623200
Трусов Н.В., Апрятин С.А., Шипелин В.А., Гмошинский И.В. Полнотранскриптомный анализ генов печени мышей в сравнительном исследовании эффективности кверцетина на двух моделях ожирения // Проблемы эндокринологии. 2020. Т 66, № 5. С. 31-47. https://doi.org/10.14341/probl12561
Jiang X., Zhang D., Shi J., Chen Y, Zhang P, Mei B. Increased inflammatory response both in brain and in periphery in presenilin 1 and presenilin 2 conditional double knock-out mice // Journal of Alzheimers Disease. 2009. Vol. 18, № 3. PP. 515-523. https://doi.org/10.3233/JAD-2009-1164
Schneider M.R., Kolligs F.T. E-cadherin’s role in development, tissue homeostasis and disease: insights from mouse models: tissue-specific inactivation of the adhesion protein E-cadherin in mice reveals its functions in health and disease // Bioessays. 2015. Vol. 37, № 3. PP 294-304. https://doi.org/10.1002/bies.201400141
Potikha T., Ella E., Cerliani J.P., Mizrahi L., Pappo O., Rabinovich G.A., Galun E., Goldenberg D.S. Galectin-1 is essential for efficient liver regeneration following hepatectomy // Oncotarget. 2016. Vol. 7, № 22. PP. 31738-31754. https://doi.org/10.18632/oncotarget.9194
Jiang Z.J., Shen Q.H., Chen H.Y, Yang Z., Shuai M.Q., Zheng S.S. Galectin-1 gene silencing inhibits the activation and proliferation but induces the apoptosis of hepatic stellate cells from mice with liver fibrosis // International Journal of Molecular Medicine. 2019. Vol. 43, № 1. PP 103-116. https://doi.org/10.3892/ijmm.2018.3950
Kim G.Y, Lee Y.M., Cho J.H., Pan C.J., Jun H.S., Springer D.A., Mansfield B.C., Chou J.Y Mice expressing reduced levels of hepatic glucose-6-phosphatase-a activity do not develop age-related insulin resistance or obesity // Human Molecular Genetocs. 2015. Vol.24, № 18. PP. 5115-5125. https://doi.org/10.1093/hmg/ddv230
Plutzky J., Kelly D.P The PPAR-RXR transcriptional complex in the vasculature: energy in the balance // Circulation Research. 2011. Vol. 108, № 8. PP. 1002-1016. https://doi.org/10.1161/CIRCRESAHA.110.226860
Трусов Н.В., Апрятин С.А., Горбачев А.Ю., Наумов В.А., Мжельская К.В., Гмошинский И.В. Влияние гиперкалорийного рациона и кверцетина на полнотранскриптомный профиль ткани печени крыс линии Zucker-LEPRfa // Проблемы эндокринологии. 2018. Т. 64, № 6. С. 371-382. https://doi.org/10.14341/probl9936
Das U.N. Bioactive lipids in age-related disorders. In: Guest P. (eds) Reviews on new drug targets in age-related disorders // Advances in Experimental Medicine and Biology. Vol. 1260. Springer, Cham. 2020. PP. 33-83. https://doi.org/10.1007/978-3-030-42667-5_3
 Comparative evaluation of the effect of resveratrol and carnitine on the full transcriptomic profile of liver tissue in mice with different sensitivity to the development of alimentary obesity | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. №  54. DOI: 10.17223/19988591/54/5

Comparative evaluation of the effect of resveratrol and carnitine on the full transcriptomic profile of liver tissue in mice with different sensitivity to the development of alimentary obesity | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. № 54. DOI: 10.17223/19988591/54/5

Download full-text version
Counter downloads: 285