The effect of cadaverine on redox homeostasis of wheat seedling roots and their resistance to damage heating | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. № 54. DOI: 10.17223/19988591/54/6

The effect of cadaverine on redox homeostasis of wheat seedling roots and their resistance to damage heating

Polyamines are plant metabolites involved in many processes under physiologically normal and stressful conditions. Cadaverine is one of the least studied plant polyamines. The relationship between its physiological effects and the formation of signaling mediators, in particular, reactive oxygen species (ROS), has hardly been specially studied. The aim of this work was to study the possible protective effect of cadaverine on wheat (Triticum aestivum L.) seedlings under heat stress and its relationship with the formation and detoxification of ROS by antioxidant enzymes. Etiolated seedlings of soft winter wheat variety Doskonala were used in the work. We treated three-day-old seedlings with cadaverine at concentrations ranging from 0.05 to 2.5 mM by adding it to the root incubation medium. In some variants of the experiment, we treated seedlings with a hydrogen peroxide scavenger dimethylthiourea (DMTU - 150 pM), a diamine oxidase inhibitor aminogunidine (1 mM) or an inhibitor NADPH oxidase imidazole (10 pM), as well as the indicated inhibitors in combination with cadaverine. The hydrogen peroxide content and the activity of antioxidant enzymes were determined in the roots of seedlings a certain time after treatment with the studied compounds. One day after the treatment of seedlings with cadaverine, ROS antagonists, and a combination of effectors, the seedlings were subjected to damaging heating in a water thermostat (10 min at 45 °C). 24 h after heating, we assessed the content of the products of lipid peroxidation (LPO) in the roots and, after 3 days, the survival of seedlings. Incubation in the presence of cadaverine increased the resistance of seedlings to damaging heat (See Fig. 1). The highest relative number of surviving seedlings was observed in the variant with 1 mM cadaverine treatment. Under the effect of cadaverine, the content of hydrogen peroxide in the roots increased (See Fig. 2). We observed a noticeable effect 1-4 h after the start of treatment, with a maximum after 2 h. Treatment of seedlings with a scavenger of hydrogen peroxide DMTU removed the manifestation of the effect of an increase in the content of H2O2 in the roots caused by the action of cadaverine (See Fig. 3). This effect was also completely eliminated by the diamine oxidase inhibitor aminoguanidine and was almost unchanged in the presence of the NADPH oxidase inhibitor imidazole. The effect of heat stress on seedlings caused an increase in the content of the LPO products in them. Treatment with cadaverine markedly reduced this manifestation of oxidative stress. The antioxidant DMTU and the diamine oxidase inhibitor aminoguanidine largely neutralized the protective effect of cadaverine (See Fig. 4a). At the same time, the NADPH oxidase inhibitor imidazole had almost no effect on the manifestation of the effect of cadaverine on the LPO products content in roots. Under the influence of DMTU and aminoguanidine, but not imidazole, the positive effect of cadaverine on the survival of seedlings after damaging heating was also leveled out (See Fig. 4b). The treatment of seedlings with cadaverine caused a change in the activity of antioxidant enzymes in the roots (superoxide dismutase - SOD, catalase, and guaiacol peroxidase) (See Fig. 5). DMTU and aminoguanidine neutralized the effect of cadaverine-induced increase in the activity of catalase and guaiacol peroxidase, but had almost no effect on the increase in SOD activity in roots induced by this diamine (See Fig. 6). The NADPH oxidase inhibitor imidazole did not significantly affect the manifestation of the effect of increasing the activity of antioxidant enzymes when seedlings are treated with cadaverine. We can conclude that one of the signaling mediators involved in the regulation activity of catalase and guaiacol peroxidase and in the induction of heat resistance of wheat seedlings by exogenous cadaverine is hydrogen peroxide, which is formed during the oxidation of cadaverine by diamine oxidase. At the same time, the modification of SOD activity in the roots of wheat seedlings with cadaverine, apparently, can occur without the participation of ROS. The paper contains 6 Figures and 39 References. The Authors declare no conflict of interest.

Download file
Counter downloads: 207

Keywords

Triticum aestivum, cadaverine, hydrogen peroxide, diamine oxidase, antioxidant system, heat resistance

Authors

NameOrganizationE-mail
Kokorev Alexandr I.Dokuchaev Kharkiv National Agrarian Universityplant.biology.knau@gmail.com
Kolupaev Yuriy E.Dokuchaev Kharkiv National Agrarian University; Karazin Kharkiv National Universityplant.biology.knau@gmail.com
Shkliarevskyi Maxim A.Dokuchaev Kharkiv National Agrarian Universityplant.biology.knau@gmail.com
Lugovaya Anna A.Dokuchaev Kharkiv National Agrarian Universityplant.biology.knau@gmail.com
Всего: 4

References

Takahashi T., Kakehi J. Polyamines: ubiquitous polycations with unique roles in growth and stress responses // Annals of Botany. 2010. Vol. 105, № 1. PP. 1-6. doi: 10.1093/aob/mcp259
Pal M., Szalai G., Janda T. Speculation: Polyamines are important in abiotic stress signaling // Plant Science. 2015. Vol. 237. PP. 16-23. doi: 10.1016/j.plantsci.2015.05.003
Pang X.M., Zhang Z.Y, Wen X.P., Ban Y, Moriguchi T. Polyamines, all-purpose players in response to environment stresses in plants // Plant Stress. 2007. Vol. 1, № 2. PP. 173-188.
Nayyar H., Chander S. Protective effects of polyamines against oxidative stress induced by water and cold stress in chickpea // Journal of Agronomy and Crop Science. 2004. Vol. 190, № 5. PP. 355-365. doi: 10.1111/j.1439-037X.2004.00106.x
Gill S.S., Tuteja N. Polyamines and abiotic stress tolerance in plants // Plant Signaling Behavior. 2010. Vol. 5, № 1. PP. 26-33. doi: 10.4161/psb.5.1.10291
Mostofa M.G., Yoshida N., Fujita M. Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems // Plant Growth Regulation. 2014. Vol. 73, № 1. PP. 31-44. doi: 10.1007/s10725-013-9865-9
Rajpal C., Tomar P.C. Cadaverine: A potent modulator of plants against abiotic stresses // Journal of Microbiology, Biotechnology and Food Sciences. 2020. Vol. 10, № 2. PP. 205210. doi: 10.15414/jmbfs.2020.10.2.205-210
Кузнецов Вл.В., Радюкина Н.Л., Шевякова Н.И. Полиамины при стрессе: биологическая роль, метаболизм и регуляция // Физиология растений. 2006. Т. 53, № 5. С. 658-683.
Sharma L., Priya M., Kaushal N., Bhandhari K., Chaudhary S., Dhankher O.P., Prasad P. V V, Siddique K.H.M., Nayyar H. Plant growth-regulating molecules as thermoprotectants: functional relevance and prospects for improving heat tolerance in food crops // Journal of Experimental Botany. 2020. Vol. 71, № 2. PP. 569-594. doi: 10.1093/jxb/erz333
Edreva A., Yordanov I., Kardjieva R., Gesheva E. Heat shock responses of bean plants: involvement of free radicals, antioxidants and free radical/active oxygen scavenging systems // Biologia Plantarum. 1998. Vol. 41, № 2. PP. 185-191. doi: 10.1023/A:1001846009471
Shevyakova N.I., Rakitin V.Yu., Duong D.B., Sadomov N.G., Kuznetsov Vl.V Heat shock-induced cadaverine accumulation and translocation throughout the plant // Plant Science. 2001. Vol. 161, № 6. PP. 1125-1133. doi: 10.1016/S0168-9452(01)00515-5
Парамонова Н.В., Шевякова Н.И., Шорина М.В., Стеценко Л.А., Ракитин В.Ю., Кузнецов Вл.В. Влияние путресцина на ультраструктуру апопласта мезофилла листьев Mesembryanthemum crystallinum при засолении // Физиология растений. 2003. Т 50, № 5. С. 661-674.
Cavusoglu K., Kabar K. Comparative effects of some plant growth regulators on the germination of barley and radish seeds under high temperature stress // EurAsian Journal of BioSciences. 2007. Vol. 1, № 1. PP. 1-10.
Tomar P.C., Lakra N., Narayan M.S. Effect of cadaverine on Brassica juncea (L.) under multiple stress // Indian Journal of Experimental Biology. 2013. Vol. 51, № 9. PP. 758-763.
Аронова Е.Е., Шевякова Н.И., Стаценко Л.А., Кузнецов Вл.В. Индукция кадаверином экспрессии гена супероксиддисмутазы у растений Mesembryanthemum crystallinum L. // Докл. АН. 2005. Т 403, № 1. С. 131-134.
Sung M., Hsu Yi., Hsu Yu. Hypersalinity and hydrogen peroxide upregulation of gene expression of antioxidant enzymes in Ulva fasciata against oxidative stress // Marine Biotechnology. 2009. Vol. 11, № 2. PP. 199-209. doi: 10.1007/s10126-008-9134-5
Shevyakova N.I., Rakitin V.Yu., Stetsenko L.A., Aronova E.E., Kuznetsov Vl.V Oxidative stress and fluctuations of free and conjugated polyamines in the halophyte Mesembryanthemum crystallinum L. under NaCl salinity // Plant Growth Regulation. 2006. Vol. 50, № 1. PP. 69-78. doi: 10.1007/PL00021848
Hung K.T., Hsu Y.T., Kao C.H. Hydrogen peroxide is involved in methyl jasmonate induced senescence of rice leaves // Physiologia Plantarum. 2006. Vol. 127, № 2. PP. 293-303. doi: 10.1111/j.1399-3054.2006.00662.x
Колупаев Ю.Е., Обозный А.И., Швиденко Н.В. Роль пероксида водорода в формировании сигнала, индуцирующего развитие теплоустойчивости проростков пшеницы // Физиология растений. 2013. Т. 60, № 2. С. 221-229. doi: 10.7868/ S0015330313020127
Sagisaka S. The occurrence of peroxide in a perennial plant, Populus gelrica // Plant Physiology. 1976. Vol. 57, № 2. PP. 308-309. doi: 10.1104/pp.57.2.308
Фазлиева Э.Р, Киселева И.С., Жуйкова Т.В. Антиоксидантная активность листьев Melilotus albus и Trifolium medium из техногенно нарушенных местообитаний Среднего Урала при действии меди // Физиология растений. 2012. Т. 59, № 3. С. 369375.
Колупаев Ю.Е., Ястреб Т.О., Обозный А.И., Рябчун Н.И., Кириченко В.В. Конститутивная и индуцированная холодом устойчивость проростков ржи и пшеницы к агентам окислительного стресса // Физиология растений. 2016. Т. 63, №3. С. 346-357. doi: 10.7868/S0015330316030064
Карпец Ю.В., Колупаев Ю.Е., Ястреб Т.О., Обозный А.И. Влияние модификации NO-статуса, закаливающего прогрева и пероксида водорода на активность антиоксидантных ферментов в проростках пшеницы // Физиология растений. 2015. Т 62, № 3. С. 317-323. doi: 10.7868/S0015330315030094
Kohli S.K., Handa N., Gautam V, Bali S., Sharma A., Khanna K., Arora S., Thukral K.A., Ohri P., Karpets Y, Kolupaev Y, Bhardwaj R. ROS signaling in plants under heavy metal stress // Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress, eds. Khan M.I.R., Khan N.A. Singapore : Springer Nature, 2017. PP. 185-214. doi: 10.1007/978-981-10-5254-5_8
Kolupaev Yu.E., Kokorev A.I., Yastreb T.O., Horielova E.I. Hydrogen peroxide as a signal mediator at inducing heat resistance in wheat seedlings by putrescine // The Ukrainian Biochemical Journal. 2019. Vol. 91, № 6. PP. 103-111. doi: 10.15407/ubj91.06.103
Иванов Ю.В., Савочкин Ю.В. Изоферментный состав супероксиддисмутаз сеянцев сосны обыкновенной (Pinus sylverstris L.) при хроническом действии ионов цинка // Вестник Томского государственного университета. Биология. 2013. № 2 (22). С. 150159. doi: 10.17223/19988591/22/12
Hausman J.F., Kevers C., Gaspari T. Putrescine control of peroxidase activity in the inductive phase of rooting in poplar shoots in vitro, and the adversary effect of spermidine // Journal of Plant Physiology. 1995. Vol. 146, № 5-6. PP. 681-685. doi: 10.1016/S0176-1617(11)81933-4
Kuznetsov Vl., Shorina M., Aronova E., Stetsenko L., Rakitin V, Shevyakova N. NaCl-and ethylene-dependent cadaverine accumulation and its possible protective role in the adaptation of the common ice plant to salt stress // Plant Science. 2007. Vol. 172, № 2. PP. 363-370. doi: 10.1016/j.plantsci.2006.09.01
Glyan’ko A.K. Initiation of nitric oxide (NO) synthesis in roots of etiolated seedlings of pea (Pisum sativum L.) under the influence of nitrogen-containing compounds // Biochemistry (Moscow). 2013. Vol. 78, № 5. PP. 471-476. doi: 10.1134/S0006297913050052
Arora D., Jain P., Singh N., Kaur H., Bhatla S.C. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants // Free Radical Research. 2016. Vol. 50, № 3. PP. 291-303. doi: 10.3109/10715762.2015.1118473
Колупаев Ю.Е., Кокорев А.И., Шкляревский М.А., Луговая А.А., Карпец Ю.В., Иванченко О.Е. Роль модификации синтеза NO в реализации защитного действия путресцина на проростки пшеницы при тепловом стрессе // Прикладная биохимия и микробиология. 2021. Т 57, № 3. С. 282-290. doi: 10.31857/S0555109921030065
Pottosin I., Velarde-Buendía A.M., Bose J., Fuglsang A.T., Shabala S. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots // Journal of Experimental Botany. 2014. Vol. 65, № 9. PP. 2463-2472. doi: 10.1093/jxb/eru133
Messiaen J., Van Cutsem P. Polyamines and pectins. II. Modulation of pectic-signal transduction // Planta. 1999. Vol. 208. PP. 247-256. doi: 10.1007/s004250050556
Kusano T., Berberich T., Tateda C., Takahashi Y. Polyamines: essential factors for growth and survival // Planta. 2008. Vol. 228. PP. 367-381. doi: 10.1007/s00425-008-0772-7
Колупаев Ю.Е., Кокорев А.И., Шкляревский М.А. Кальцийзависимое изменение активности антиоксидантных ферментов и теплоустойчивости проростков пшеницы под влиянием экзогенного путресцина // Вестник Томского государственного университета. Биология. 2020. № 51. С. 105-122. doi: 10.17223/19988591/51/6
Saxena S.C., Kaur H., Verma P., Petla B.P., Andugula V.R., Majee M. Osmoprotectants: Potential for crop improvement under adverse conditions // Plant Acclimation to Environmental Stress, eds. Tuteja N., Gill S.S. New York: Springer Science+Business Media, 2013. PP. 197-231. doi: 10.1007/978-1-4614-5001-6_9
Andronis E.A., Moschou P.N., Toumi I., Roubelakis-Angelakis K.A. Peroxisomal polyamine oxidase and NADPH-oxidase cross-talk for ROS homeostasis which affects respiration rate in Arabidopsis thaliana // Frontiers in Plant Science. 2014. Vol. 5. Art. 132. doi: 10.3389/fpls.2014.00132
Liu T., Dobashi H., Kim D.W., Sagor G.H.M., Niitsu M., Berberich T., Kusano T. Arabidopsis mutant plants with diverse defects in polyamine metabolism show unequal sensitivity to exogenous cadaverine probably based on their spermine content // Physiology and Molecular Biology of Plants. 2014. Vol. 20. PP. 151-159. doi: 10.1007/s12298-014-0227-5
Jancewicz A.L., Gibbs N.M., Masson P.H. Cadaverine’s functional role in plant development and environmental response // Frontiers in Plant Science. 2016. Vol. 7. Art. 870. doi: 10.3389/fpls.2016.00870
 The effect of cadaverine on redox homeostasis of wheat seedling roots and their resistance to damage heating | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. №  54. DOI: 10.17223/19988591/54/6

The effect of cadaverine on redox homeostasis of wheat seedling roots and their resistance to damage heating | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. № 54. DOI: 10.17223/19988591/54/6

Download full-text version
Counter downloads: 285