Obtaining tree stand attributes from unmanned aerial vehicle (UAV) data: the case of mixed forests | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. № 54. DOI: 10.17223/19988591/54/8

Obtaining tree stand attributes from unmanned aerial vehicle (UAV) data: the case of mixed forests

Nowadays, due to the rapid development of lightweight unmanned aerial vehicles (UAV), remote sensing systems of ultra-high resolution have become available to many researchers. Conventional ground-based measurements for assessing tree stand attributes can be expensive, as well as time- and labor-consuming. Here, we assess whether remote sensing measurements with lightweight UAV can be more effective in comparison to ground survey methods in the case of temperate mixed forests. The study was carried out at the Prioksko-Terrasny Biosphere Nature Reserve (Moscow region, Russia). This area belongs to a coniferous-broad-leaved forest zone. Our field works were carried out on the permanent sampling plot of 1 ha (100x100 m) established in 2016. The coordinates of the plot center are N 54.88876°, E 37.56273° in the WGS 84 datum. All trees with DBH (diameter at breast height) of at least 6 cm (779 trees) were mapped and measured during the ground survey in 2016 (See Fig. 1 and Table 1). Mapping was performed with Laser Technology TruPulse 360B angle and a distance meter. First, polar coordinates of each tree trunk were measured, and then, after conversion to the cartesian coordinates, the scheme of the stand was validated onsite. Species and DBH were determined for each tree. For each living tree, we detected a social status class (according to Kraft). Also for living trees, we measured the tree height and the radii of the crown horizontal projection in four cardinal directions. A lightweight UAV Phantom 4 (DJI-Innovations, Shenzhen, China) equipped with an integrated camera of 12Mp sensor was used for aerial photography in this study. Technical parameters of the camera are available in Table 2. The aerial photography was conducted on October 12, 2017, from an altitude of 68 m. The commonly used mosaic flight mode was used with 90% overlapping both for side and front directions. We applied Agisoft Metashape software for orthophoto mosaic image and dense point cloud building. The canopy height model (CHM) was generated with lidR package in R. We used lasgroundQ function and cloth simulation filter for classification of ground points. To create a normalized dataset with the ground at 0, we used spatial interpolation algorithm tin based on a Delaunay triangulation, which performs a linear interpolation within each triangle, implemented in the lasnormilise() function. CHM was generated according to the pit-free algorithm based on the computation of a set of classical triangulations at different heights. The location and height of individual trees were automatically detected by the function FindTreesCHM() from the package rLIDAR in R. The algorithm implemented in this function is local maximum with fixed window size. Accuracy assessment of automatically detected trees (in QGIS software) was performed through visual interpretation of orthophoto mosaic and comparison with ground survey data. The number of correctly detected trees, omitted by the algorithm and not existing but detected trees were counted. As a result of aerial photography, 501 images were obtained. During these data processing with the Metashape, dense point cloud of 163.7 points / m2 was generated. CHM with 0.5 m resolution was calculated. According to the individual-tree detection algorithm, 241 trees were found automatically (See Fig. 2A). The total accuracy of individual tree detection was 73.9%. Coniferous trees (Pinus sylvestris and Picea abies) were successfully detected (86.0% and 100%, respectively), while results for birch (Betula spp.) required additional treatment. The algorithm correctly detected only 58.2% of birch trees due to false-positive trees (See Fig. 2B and Table 3). These results confirm the published literature data obtained for managed tree stands. Tree heights retrieved from the UAV were well-matched to ground-based method results. The mean tree heights retrieved from the UAV and ground surveys were 25.0±4.8 m (min 8.2 m, max 32.9 m) and 25.3±5.2 m (min 5.9 m, max 34.0 m), respectively (no significant difference, p-value=0.049). Linear regression confirmed a strong relationship between the estimated and measured heights (y=k*x, R2=0.99, k=0.98) (See Fig. 3A). Slightly larger differences in heights estimated by the two methods were found for birch and pine; for spruce, the differences were smaller (See Fig. 3B and Table 4). We believe that ground measurements of birch and pine height are less accurate than for spruce due to different crown shapes of these trees. So, our results suggested that UAV data can be used for tree stand attributes estimation, but automatically obtained data require validation. The paper contains 3 Figures, 4 Tables and 40 References. The Authors declare no conflict of interest.

Download file
Counter downloads: 124

Keywords

UAV, canopy height model, tree detection, mixed forests

Authors

NameOrganizationE-mail
Ivanova Natalya V.Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences; Pushchino Scientific Center for Biological Research of the Russian Academy of Sciencesnatalya.dryomys@gmail.com
Shashkov Maxim P.Pushchino Scientific Center for Biological Research of the Russian Academy of Sciencesmax.carabus@gmail.com
Shanin Vladimir N.Pushchino Scientific Center for Biological Research of the Russian Academy of Sciencesshaninvn@gmail.com
Всего: 3

References

Anderson K., Gaston K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology // Frontiers in Ecology and the Environment. 2013. Vol. 11, № 3. PP. 138-146. doi: 10.1890/120150
Pajares G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAV) // Photogrammetric Engineering & Remote Sensing. 2015. Vol. 81, № 4. PP. 281-330. doi: 10.14358/PERS.81.4.281
Dandois J., Ellis E.C. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision // Remote Sensing of Environment. 2013. Vol. 136. PP. 259-276. doi: 10.1016/j.rse.2013.04.005
Puliti S., Ole Orka H., Gobakken T., Naesset E. Inventory of small forest areas using an unmanned aerial system // Remote Sensing. 2015. Vol. 7, № 8. PP. 9632-9654. doi: 10.3390/rs70809632
Messinger M., Gregory P., Asner G.P., Silman M. Rapid assessment of Amazon forest structure and biomass using small unmanned aerial systems // Remote Sensing. 2016. Vol. 8, № 8. PP. 1-15. doi: 10.3390/rs8080615
Денисов С.А., Домрачев А.А., Елсуков А.С. Опыт применения квадрокоптера для мониторинга возобновления леса // Вестник Поволжского государственного технологического университета. Серия: Лес. Экология. Природопользование. 2016. № 4(32). С. 34-46. doi: 10.15350/2306-2827.2016.4.34
Медведев А.А., Тельнова Н.О., Кудиков А.В. Дистанционный высокодетальный мониторинг динамики зарастания заброшенных сельскохозяйственных земель лесной растительностью // Вопросы лесной науки. 2019. № 3. С. 1-12. doi: 10.31509/2658-607x-2019-2-3-1-12
Jaskierniak D., Kuczera G., Benyon R.G., Lucieer A. Estimating tree and stand sapwood area in spatially heterogeneous southeastern Australian forests // Journal of Plant Ecology. 2016. Vol. 9, № 3. PP. 272-284. doi: 10.1093/jpe/rtv056
Zhang J., Hud J., Liane J., Fan Z., Ouyang X., Ye W. Seeing the forest from drones: testing the potential of lightweight drones as a tool for long-term forest monitoring // Seeing the forest. 2016. Vol. 198. PP. 60-69. doi: 10.1016/j.biocon.2016.03.027
Hudak A.T., Haren A.T., Crookston N.L., Liebermann R.J., Ohmann J.L. Imputing forest structure attributes from stand inventory and remotely sensed data in western Oregon, USA // Forest Science. 2014. Vol. 60. PP. 253-269. doi: 10.5849/forsci.12-101
Hansen E.H., Gobakken T., Bollandsas O.M., Zahabu E., N®sset E. Modeling aboveground biomass in dense tropical submontane rainforest using airborne laser scanner data // Remote Sensing. 2015. Vol. 7, № 1. PP. 788-807. doi: 10.3390/rs70100788
Ершов Д.В., Гаврилюк Е.А., Белова Е.И., Никитина А.Д. Определение породной структуры лесного участка по ортофотопланам беспилотной аэрофотосъемки // Актуальные проблемы современного лесоводства. Вторые Международные чтения памяти Г.Ф. Морозова. Симферополь : ИТ «АРИАЛ», 2020. С. 141-152.
Li W., Niu Z., Chen H., Li D., Wu M., Zhao W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system // Ecological Indicators. 2016. Vol. 67. PP. 637-648. doi: 10.1016/j.ecolind.2016.03.036
Богданов А.П., Алешко Р.А., Ильинцев А.С. Выявление взаимосвязи диаметра крон деревьев с различными таксационными показателями в северо-таежном лесном районе // Вопросы лесной науки. 2019. Т. 2, № 4. С. 1-10. doi: 10.31509/2658-607x- 2019-2-4-1-10
Данилов М.С., Никитина А.Д, Тихонова Е.В. Использование аэрофотосъёмки беспилотными летательными аппаратами для определения характеристик древостоя // Актуальные проблемы экологии и природопользования: сборник научных трудов XXI Международной научно-практической конференции: в 3 т. Т. 1. М. : РУДН, 2020. С. 89-94.
Zarco-Tejada P.J., Diaz-Varela R., Angileri V, Loudjani P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods // European Journal of Agronomy. 2014. Vol. 55. PP. 89-99. doi: 10.1016/j.eja.2014.01.004
Mohan M., Silva C.A., Klauberg C., Jat P., Catts G., Cardil A., Hudak A.T., Dia M. Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest // Forests. 2017. Vol. 8, № 9. PP. 1-17. doi: 10.3390/f8090340
Birdal A.C., Avdan U., Turk T. Estimating tree heights with images from an unmanned aerial vehicle // Geomatics, Natural Hazards and Risk. 2017. Vol. 8. PP. 1144-1156. doi: 10.1080/19475705.2017.1300608
Bennett G., Hardy A., Bunting P., Morgan P., Fricker A. A transferable and effective method for monitoring continuous cover forestry at the individual tree level using UAVs // Remote Sensing. 2020. Vol. 12, № 13. PP. 1-21. doi: 10.3390/rs12132115
Krisanski S., Taskhiri M.S., Turner P. Enhancing methods for under-canopy unmanned aircraft system based photogrammetry in complex forests for tree diameter measurement // Remote Sensing. 2020. Vol. 12, № 10. PP. 1-21. doi: 10.3390/rs12101652
Домнина Е.А., Тимонов А.С., Кантор Г.Я., Кислицына А.П., Савиных В.П. Опыт составления детальной карты растительности пойменного луга // Теоретическая и прикладная экология. 2017. № 1. С. 42-49. doi: 10.21046/2070-7401-2020-17-1-150-163
Санников П.Ю., Андреев Д.Н., Бузмаков С.А. Выявление и анализ сухостоя при помощи беспилотного летательного аппарата // Современные проблемы дистанционного зондирования Земли из космоса. 2018. Т. 15, № 3. С. 103-113. doi: 10.21046/2070-7401-2018-15-3-103-113
Медведев А.А., Тельнова Н.О., Кудиков А.В., Алексеенко Н.А. Анализ и картографирование структурных параметров редкостойных северотаёжных лесов на основе фотограмметрических облаков точек // Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т 17, № 1. С. 150-163. doi: 10.21046/2070-7401-2020-17-1-150-163
Алешко Р.А., Алексеева А.А., Шошина К.В., Богданов А.П., Гурьев А.Т. Разработка методики актуализации информации о лесном участке с использованием снимков со спутников и малых БПЛА // Современные проблемы дистанционного зондирования Земли из космоса. 2017. Т. 14, № 5. С. 87-99. doi: 10.21046/2070-7401-2017-14-5-87-99
Ковязин В.Ф., Виноградов К.П., Васильева Е.А., Киценко А.А. Воздушное лазерное сканирование для уточнения таксационных характеристик древостоев // Известия вузов. Лесной журнал. 2020. № 6. С. 42-54. doi: 10.37482/0536-1036-2020-6-42-54
Zhou J., Proisy C., Descombes X., Le Maire G., Nouvellon Y, Stape J.L., Viennois G., Zerubia J., Couteron P. Mapping local density of young Eucalyptus plantations by individual tree detection in high spatial resolution satellite images // Forest Ecology and Management. 2013. Vol. 301. PP. 129-141. doi: 10.1016/j.foreco.2012.10.007
Zahawi R.A., Dandois J.P., Holl K.D., Nadwodny D., Reid J.L., Ellis E.C. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery // Biological Conservation. 2015. Vol. 186. PP. 287-295. doi: 10.1016/j.biocon.2015.03.031
Miller E., Dandois J.P., Detto M., Hall J.S. Drones as a tool for monoculture plantation assessment in the steepland tropics // Forests. 2017. Vol. 8, № 5. PP. 1-14. doi: 10.3390/ f8050168
Otero V, Van De Kerchove R., Satyanarayana B., Martinez-Espinosa C., Amir Bin Fisol M., Rodila Bin Ibrahim M., Sulong I., Mohd-Lokman H., Lucas R., Dahdouh-Guebas F. Managing mangrove forests from the sky: forest inventory using field data and unmanned aerial vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia // Forest Ecology and Management. 2018. Vol. 411. PP. 35-45. doi: 10.1016/j.foreco.2017.12.049
Eysn L., Hollaus M., Lindberg E., Berger F., Monnet J.-M., Dalponte M., Kobal M., Pellegrini M., Lingua E., Mongus D., Pfeifer P. A benchmark of LiDAR-based single tree detection methods using heterogeneous forest data from the alpine space // Forests. 2015. Vol. 6, № 5. PP. 1721-1747. doi: 10.3390/f6051721
Picos J., Bastos G., Miguez D., Alonso L., Armesto J. Individual tree detection in a Eucalyptus plantation using unmanned aerial vehicle (UAV)-LiDAR // Remote Sensing. 2020. Vol. 12. PP. 1-17. doi: 10.3390/rs12050885
Шанин В.Н., Шашков М.П., Иванова Н.В., Быховец С.С., Грабарник П.Я. Исследование структуры древостоев и микроклиматических условий под пологом леса на постоянной пробной площади в Приокско-Террасном заповеднике // Труды Приокско-Террасного заповедника. Вып. 7. М. : КМК, 2018. С. 68-80.
Agisoft LLC. Agisoft Metashape (Version 1.5). Software. 2019. Available at: https://www.agisoft.com/(дата обращения: 17.01.2021).
R Core Team. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. 2019. Available at: https://www.R-project.org/(дата обращения: 17.01.2021).
Silva C.A., Hudak A.T., Vierling L.A., Loudermilk E.L., O’Brien J.J., Hiers J.K., Khosravipour A. Imputation of individual Longleaf Pine (Pinus palustris Mill.) tree attributes from field and LiDAR Data // Canadian Journal of Remote Sensing. 2016. Vol. 42, № 5. PP. 554-573. doi: 10.1080/07038992.2016.1196582
Zhang W., Qi J., Wan P., Wang H., Xie D., Wang X., Yan G. An easy-to-use airborne LiDAR data filtering method based on cloth simulation // Remote Sensing. 2016. Vol. 8, № 6. PP. 1-22. doi: 10.3390/rs8060501
Khosravipour A., Skidmore A.K., Skidmore M., Wang T., Hussin Y Generating pit-free canopy height models from airborne LiDAR // Photogrammetric Engineering and Remote Sensing. 2014. № 9. PP. 863-872. doi: 10.14358/PERS.80.9.863
QGIS development team. QGIS geographic information system. Open source geospatial foundation project. 2019. Available at: http://qgis.osgeo.org (дата обращения 17.01.2021).
Dhodhi M.K., Saghri J.A., Ahmad I., Ul-Mustafa R. D-ISODATA: a distributed algorithm for unsupervised classification of remotely sensed data on network of workstations // Journal of Parallel and Distributed Computing. 1999. Vol. 59, № 2. PP. 280-301. doi: 10.1006/jpdc.1999.1573
Jin Y, Sung S., Lee D.K., Biging G.S., Jeong S. Mapping deforestation in North Korea using phenology-based multi-index and Random forest // Remote Sensing. 2016. Vol. 8, № 12. PP. 1-15. doi: 10.3390/rs8120997
 Obtaining tree stand attributes from unmanned aerial vehicle (UAV) data: the case of mixed forests | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. №  54. DOI: 10.17223/19988591/54/8

Obtaining tree stand attributes from unmanned aerial vehicle (UAV) data: the case of mixed forests | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. № 54. DOI: 10.17223/19988591/54/8

Download full-text version
Counter downloads: 285