Estimation of genomic DNA damage in populations of the marsh frog (Pelophylax ridibundus Pallas, 1771) of the Belgorod agglomeration by DNA comet assay
Anthropogenic pollution of water bodies is a serious problem for the sustainability of aquatic ecosystems. The main sources of pollution of water bodies are wastewater, washouts from agricultural fertilizers, pesticides and roads. Many of highly persistent pollutants are dangerous mutagens and carcinogens. The disruption they cause to the DNA and RNA structure and properties of organisms can have long-term consequences and can affect the livelihood of future generations. Among existing DNA damage estimation methods, DNA comet assay is the most widespread due to its accuracy and reliability. In our study, the marsh frog (Pelophylax ridibundus Pallas, 1771) was chosen as an object of study. This species is adapted to life under anthropogenic influence and actively inhabits transformed biotopes. The aim of our work was to estimate the level of DNA damage by DNA comet assay of P. ridibundus inhabiting Belgorod city and its suburbs. We studied a total of 6 marsh frog populations, with collection sites differing in the degree of anthropogenic pressure (See Table 1 and Fig. 1), and we selected 5 individuals of P. ridibundus from each locality. The experimental animals were handled in accordance with international ethical standards. Animal liver was used as the material for the study and analysis was performed on the day of collection. Tissue was homogenized in phosphate-salt buffer (pH 7.5) containing 20 mM EDTA-Na2 and 10% dimethyl sulfoxide (DMSO) at +4 °C. To precipitate large fragments, tubes were incubated for 5 min at room temperature before transferring 1.5 ml of the top layer to microcentrifuge tubes and centrifuged in a 5415 R Eppendorf microcentrifuge (Germany) at 1000 g for 10 min at +4 °C. The supernatant was removed and the cell precipitate was diluted in 1 ml of phosphate salt buffer cooled to +4 °C. To obtain microarrays, 60 pl of cell suspension was mixed with 240 pl of 1% fusible agarose solution (t<42 °C). The lysis was performed for at least one hour at +4 °C (lysis buffer: 10mM Tris-HCl (pH 10) 2.5M NaCl, 100 mM EDTA-Na2 and 1% Triton X-100 with 10% DMSO). Electrophoresis was performed in a darkened room in Tris-EDTA-borate electrode buffer (TBE) for 20 min at a voltage of 1V/cm. At the end of electrophoresis, the preparations were fixed with 70% ethanol for 15 min. The preparations were stained with SYBR Creen I dye, with subsequent analysis using a luminescent trinocular microscope MIKMED-2 of Lomo (Russia), with at least 100 cells analyzed from each preparation, which were divided into 5 types; cells in the state of apoptosis were counted separately (Durnev, et al., 2006). The degree of DNA damage was estimated using the Kruskel-Wallis criterion (“DNA comet index”) (Struwe et al., 2007; Filippov, 2014). To determine the statistical significance of differences between the studied populations we used one-way analysis of variance (ANOVA); statistically significant differences were considered atp < 0.05. According to the data obtained, in all studied populations, the mean value of the DNA damage index (DDI) did not exceed the first threshold of DNA degradation (See Table 2). This may indicate, on the one hand, the absence of high concentrations of genotoxic pollutants here (which is highly doubtful) and, on the other hand, the efficient operation of the reparative system of marsh frog. Nevertheless, the calculated DDI values made it possible to construct a gradational scale of DNA destruction level in the studied groups of frogs depending on the degree of pollution and proximity of residential and industrial buildings (See Table 2-4). Various chemical compounds from industrial production, particularly nitrogen compounds, are known to have genotoxic effects. Due to the lack of possibility to perform chemical analysis of water to identify concentrations of genotoxic pollutants, we analysed data on surface water pollution in some of the investigated locations from open literature sources. As a result of this analysis, we revealed the dynamics of surface water pollution. All investigated points by the mean value of the statistical DDI surpassed reliably the least polluted site “Sevrukovo”, which is located in the green zone and at a considerable distance from urbanized areas (See Table 2-4). High values of DDI were fixed in a zone of industrial and multi-storey buildings, localities “Seversky Donets” (DDI = 0.454) and “Veselka” (DDI = 0.416). Exceeding maximum permissible concentration of nitrogen compounds is observed in the above mentioned rivers. Noteworthy is the fact that the highest value of the DDI (0.521) was recorded in the estuary of the Razumnaya River remote from the industrial part of the city (“Razumnoye”). It should be noted that in this locality there is the greatest number of damaged cells, including apoptosis (See Table 2, Fig. 2 and 3). The highest DDI value is due to the high level of pollutants, since the predominant part of the river is occupied by “non-sewered” private low-rise buildings, as well as arable land. At the same time in the upper part of the river (“Sevryukovo”) due to the lack of obvious pollutants and the intensive current contributing to self-purification of the river, we recorded the minimum value of the DDI (0.057) and the absence of cells in the state of apoptosis. Thus, the present study revealed an increase in the degree of DNA destruction in populations of marsh frogs in the impacted areas of the city of Belgorod and its surroundings. At the same time, increased levels of toxic substances may contribute to a decrease in the viability of individuals of both analyzed species and other hydrobiont species, which will negatively affect the biodiversity of the region as a whole. The paper contains 3 Figures, 4 Tables and 42 References. Abbreviations: DDI - DNA damage index (comet assay)]; MPC - Maximum permissible concentration [ПДК In Russian]. The Authors declare no conflict of interest.
Keywords
Pelophylax ridibundus,
comet assay,
urbanized area,
genotoxic pollutants,
bioindicatorAuthors
Snegin Eduard A. | Belgorod State National Research University | snegin@bsu.edu.ru |
Barkhatov Anatoliy S. | Belgorod State National Research University | barkhatov@bsu.edu.ru |
Kiselev Vladislav V. | Belgorod State National Research University | kiselev_v@bsu.edu.ru |
Yusupov Sergey R. | Belgorod State National Research University | yusupov@bsu.edu.ru |
Snegina Elena A. | Belgorod State National Research University | snegina@bsu.edu.ru |
Всего: 5
References
McGlashan D.J., Hughies J.M. Genetic evidence for historical continuity between populations of the Australian freshwater fish Craterocephalus stercusmuscarum (Atherinidae) east and west of the Great Diving Range // Journal of Fish Biology. 2001. Vol. 59. PP. 55-67. doi: 10.1m/j.1095-8649.2001.tb01378.x
Hariri M., Mirvaghefi A., Farahmand H., Taghavi L., Shahabinia A.R. In situ assessment of Karaj River genotoxic impact with the alkaline comet assay and micronucleus test, on feral brown trout (Salmo trutta fario) // Environ Toxicol Pharmacol. 2018. Vol. 58. PP. 59-69. doi: 10.1016/j.etap.2017.12.024
Reid A.J., Carlson A.K., Creed I.F., Eliason E.J., Gell P.A., Johnson P.T.J., Kidd K.A., MacCormack T.J., Olden J.D., Ormerod S.J., Smol J.P., Taylor W.W., Tockner K., Vermaire J.C., Dudgeon D., Cooke S.J. Emerging threats and persistent conservation challenges for freshwater biodiversity // Biological Reviews. 2018. Vol. 94. PP. 849-873. doi: 10.1111/brv.12480
Bolognesi C., Hayashi M. Micronucleus assay in aquatic animals // Mutagenesis. 2010. Vol. 26. PP. 205-213. doi: 10.1093/mutage/geq073
Bickham J.W., Sandhu S., Hebert P.D.N., Chikhi L., Athwal R. Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology // Mutation Research. 2000. Vol. 463, № 1. PP. 33-51. doi: 10.1016/ s1383-5742(00)00004-1
Russo C., Rocco L., Morescalchi M.A., Stingo V. Assessment of environmental stress by the micronucleus test and the Comet assay on the genome of teleost populations from two natural environments // Ecotoxicology and Environmental Safety. 2004. Vol. 57. PP. 168- 174. doi: 10.1016/S0147-6513(03)00027-7
Ameur W.B., El Megdiche Y., de Lapuente J., Barhoumi B., Trabelsi S., Ennaceur S., Camps L., Serret J., Ramos-Lopez D., Gonzalez-Linares J., Touil S., Driss M.R., Borras M. Oxidative stress, genotoxicity and histopathology biomarker responses in Mugil cephalus and Dicentrarchus labrax gill exposed to persistent pollutants. A field study in the Bizerte Lagoon: Tunisia // Chemosphere. 2015. Vol. 135. PP. 67-74. doi: 10.1016/j. chemosphere.2015.02.050
Zhelev Z.M., Arnaudova D.N., Popgeorgiev G.S., Tsonev S.V. In situ assessment of health status and heavy metal bioaccumulation of adult Pelophylax ridibundus (Anura: Ranidae) individuals inhabiting polluted area in southern Bulgaria // Ecological Indicators. 2020. Vol. 115. PP. 1-15. doi: 10.1016/j.ecolind.2020.106413
Burlibasa L., Gavrila L. Amphibians as model organisms for study environmental genotoxicity // Applied Ecology and Environmental Research. 2011. Vol. 9. PP. 1-15. doi: 10.15666/AEER/0901_001015
Natarajan A.T. Chromosome aberrations: past, present and future // Mutat. Res. 2002. Vol. 504, Iss. 1-2. PP. 3-16. doi: 10.1016/s0027-5107(02)00075-1
Wilson M., Thompson L.H. Molecular mechanisms of sister-chromatid exchange // Mutat. Res. 2007. Vol. 616, Iss. 1-2. PP. 11-23. doi: 10.1016/j.mrfmmm.2006.11.017
Swenberg A. Utilization of the alkaline elution assay as a short-term test for chemical carcinogens // Short-term Tests for chemical carcinogens. Topics in environmental physiology and medicine. Springer. 1981. PP. 48-58. doi: 10.1007/978-1-4612-5847-6_5
Fenech M., Kirsch-Volders M., Natarajan A.T., Surralles J., Crott J.W., Parry J., Norppa H., Eastmond D.A., Tucker J.D., Thomas P. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells // Mutagenesis. 2011. Vol. 26. PP. 125-132. doi: 10.1093/mutage/geq052
Dhawan A., Bajpayee M., Parmar D. Comet assay: a reliable tool for the assessment of DNA damage in different models // Cell Biology and Toxicology. 2009. Vol. 25. PP. 5-32. doi: 10.1007/s10565-008-9072-z
Gajski G., Zegura B., Ladeira C., Pourrut B., Del Bo’ C., Novak M., Sramkova M., Milic M., Gutzkow K.B., Costa S., Dusinska M., Brunborg G., Collins A. The comet assay in animal models: From bugs to whales - (Part 1 Invertebrates) // Mutation Research/Reviews in Mutation Research. 2019. Vol. 779. PP. 82-113. doi: 10.1016/j.mrrev.2019.02.003
Ostling O., Johanson K.J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells // Biochemical and Biophysical. 1984. Vol. 123, № 1. PP. 291-298. doi: 10.1016/0006-291x(84)90411-x
Frenzilli G., Nigro M., Lyons B.P. The Comet assay for the evaluation of genotoxic impact in aquatic environments // Mutation Research. 2009. Vol. 681. PP. 80-92. doi: 10.1016/j. mrrev.2008.03.001
Сорочинская У.Б., Михайленко В.М. Применение метода ДНК-комет для оценки повреждений ДНК, вызванных различными агентами окружающей среды // Онкология. 2008. Т 10, № 3. С. 303-309.
Olive P.L., Banath J.P., Durand R.E. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the “comet” assay // Radiation Research. 1990. Vol. 122, № 1. PP. 86-94.
Snegin E.A., Barkhatov A.S., Snegina E.A., Adamova V.V. Estimation of damage in populations of marsh frog (Pelophylax ridibundus) based on DNA comet assay // Indo American Journal of Pharmaceutical Sciences. 2018. Vol. 5, № 6. PP. 6091-6094. doi: 10.5281/zenodo.1304332
Экология города : учеб. пособие / В.Л. Вершинин. Екатеринбург : Изд-во Уральского университета, 2014. 88 с.
Липатов В.А., Северинов Д.А., Крюков А.А., Саакян А.Р Этические и правовые аспекты проведения экспериментальных биомедицинских исследований in vivo. Часть II // Российский медико-биологический вестник имени академика И.П. Павлова. 2019. Т 27, № 2. С. 245-257. doi: 10.23888/PAVLOVJ2019272245-257
Дурнев А.Д., Жанатаев А.К., Анисина Е.А., Сиднева Е.С., Никитина В.А., Оганесянц Л.А., Середенин С.Б., Бекиш В.Я., Чернуха И.М. Применение метода щелочного гель-электрофореза изолированных клеток для оценки генотоксических свойств природных и синтетических соединений : методические рекомендации. М. : Полиграфсервис, 2006. 28 с.
Филиппов Э.В. Использование метода «ДНК-комет» для детекции и оценки степени повреждений ДНК клеток организмов растений, животных и человека, вызванных факторами окружающей среды // Природные ресурсы Арктики и Субарктики (Наука и образование). 2014. № 2 (74). С. 72-78.
Struwe M., Greulich K.O., Suter W., Plappert-Helbig U. The photo comet assay-A fast screening assay for the determination of photogenotoxicity in vitro // Mutation Research. 2007. Vol. 632. PP. 44-57. doi: 10.1016/j.mrgentox.2007.04.014
Snegin E.A. Analysis of cytogenetic stability in natural populations of terrestrial mollusks (based on DNA comet assay) // Russian Journal of Developmental Biology. 2014. Vol. 45, № 3. PP 143-148. doi: 10.1134/S1062360414030060
Engstrom W., Darbre P., Eriksson S., Gulliver L. et al. The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signaling // Carcinogenesis. 2015. Vol. 36. PP. 838-860. doi: 10.1093/carcin/bgv030
Дурнев А.Д., Середенин С.Б. Мутагены (скрининг и фармакологическая профилактика воздействий). М. : Медицина, 1998. 328 с.
Koedrith Р, Kim H., Weon J.I., Seo Y.R. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity // International Journal of Hygiene and Environmental Health. 2013. Vol. 216. PP 587-598. doi: 10.1016/j. ijheh.2013.02.010
Tamir S., Burney S., Tannenbaum S.R. DNA damage by nitric oxide // Chemical Research in Toxicology. 1996. Vol. 9. PP. 821-827. doi: 10.1021/tx9600311
Киселев В.В., Корнилов А.Г. Геоэкологические аспекты развития современного интенсивного свиноводства на территории Белгородской области // Научные ведомости Белгородского государственного университета. Серия: Естественные науки. 2019. Т 43, № 1. С. 98-108. doi: 10.18413/2075-4671-2019-43-1-98-108
Стороженко Е.А., Корнилов А.Г, Марыныч С.Н. Пространственная динамика азотного загрязнения рек города Белгорода // Научные ведомости Белгородского государственного университета. Серия: Естественные науки. 2018. Т. 42, № 3. С. 427434. doi: 10.18413/2075-4671-2018-42-3-427-434
Киселев В.В., Курепина В.А., Корнилов А.Г. Динамика гидроэкологических показателей малых рек Белгородской области // Проблемы природопользования и экологическая ситуация в Европейской России и на сопредельных территориях. 2019. С. 348-350.
Стороженко Е.А., Марыныч С.Н., Корнилов А.Г. Азотное загрязнение реки Болховец в период половодья (паводка) в 2019 году // Проблемы природопользования и экологическая ситуация в Европейской России и на сопредельных территориях. 2019. С. 378-382.
Марыныч С.Н., Стороженко Е.А., Корнилов А.Г. Гидрохимическая ситуация на водных объектах разного типа бассейна реки Северский Донец (в части азотного загрязнения) // Эколого-географические исследования в речных бассейнах. 2018. С. 212-216.
Снегин Э.А., Бархатов А.С. Морфогенетическая структура популяций озерной лягушки Pelophylax ridibundus (Amphibia, Anura) в условиях городской среды // Теоретическая и прикладная экология. 2019. № 1. С. 47-53. doi: 10.25750/1995-4301-2019-1-047-053
Шварц С.С., Смирнов В.С., Добринский Л.Н. Метод морфофизиологических индикаторов в экологии наземных позвоночных. Свердловск : Изд-во АН СССР, 1968. 387 с.
Шварц С.С. Экологические закономерности эволюции. М. : Наука, 1980. 277 с.
Спирина Е.В. Морфофизиологические адаптации Rana ridibunda Pall. под влиянием загрязнения // Вестник Алтайского государственного аграрного университета. 2009. № 12(62). С. 64-68.
Gajski G., Zegura B., Ladeira C., Novak M., Sramkova M., Pourrut B., Del Bo’ C., Milic M., Gutzkow K.B., Costa S., Dusinska M., Brunborg G., Collins A. The comet assay in animal models: From bugs to whales - (Part 2 Vertebrates).Mutation Research/Reviews in Mutation Research. 2019. Vol. 781. PP. 130-164. doi: 10.1016/j.mrrev.2019.04.002
Erismis U.C., Cigerci I.H., Konuk M. Evaluation of DNA damage in Eurasian marsh frogs (Pelophylax ridibundus) by comet assay for determination of possible pollution in the different lakes in central Anatolia, Turkey // Bulletin of Environmental Contamination and Toxicology. 2013. Vol. 90. PP. 660-665. doi: 10.1007/s00128-013-0991-x
Maselli V., Polese G., Rippa D., Ligrone R., Rastogi R.K., Fulgione D. Frogs, sentinels of DNA damage induced by pollution in Naples and the neighbouring Provinces // Ecotoxicology and Environmental Safety. 2010. Vol. 73. PP. 1525-1529. doi: 10.1016/j. ecoenv.2010.05.011