Salicylic acid and formation of plant adaptive responses to abiotic stressors: role of signaling network components | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. № 55. DOI: 10.17223/19988591/55/8

Salicylic acid and formation of plant adaptive responses to abiotic stressors: role of signaling network components

Salicylic acid and formation of plant adaptive responses to abiotic stressors: role of signaling network components Salicylic acid (SA) is one of the key phytohormones. A lot of signaling pathways are activated under its influence. SA takes part in regulation of physiological processes such as seed germination, flowering, synthesis of other hormones, photosynthesis, respiration, transpiration, thermogenesis, responses to infection with pathogens, as well as in adaptation to action of various stressors. Numerous data show an increase in endogenous SA content in plants at the early stages of stress response. Under SA influence, there is antioxidant system activation, as well as synthesis of stress proteins (heat shock proteins, dehydrins, PR- (pathogenesis related) proteins), and accumulation of multifunctional low-molecular-weight protective compounds (proline, glycine betaine, sugars, secondary metabolites). Also, SA has an ability to induce stomatal closure in plants. We discussed the role of NPR1 protein, which is considered a key transcriptional regulator of SA signaling. We noted that the interaction of SA with this protein occurs in at least two ways: through direct binding and through SA-induced changes in cell redox homeostasis, leading to the NPR1 transition from an oligomer state to a monomer form. For NPR1 monomerization in the cytosol, there must be a sufficient pool of reducing agents, but their nature is not fully understood. At a low SA concentration in cells, NPR1 protein forms an oligomer and remains in the cytosol (See Fig. 1). Wherein proteins NPR3 and NPR4 bind residual NPR1 in the nucleus and limit its functional activity. With an increase in the SA concentration, NPR1 transforms into a monomer state and penetrates into the nucleus. In addition to the redox-dependent monomerization of NPR1, the increased SA concentration blocks the activity of NPR3 and NPR4, which in the absence of SA act as repressors of transcription regulated by the TGACG-binding factor in SA-sensitive promoters. Thus, blocking NPR3 and NPR4 leads to the activation of the expression of SA-induced genes. However, the list of SA-binding proteins is not limited to NPR. Data on the participation in SA binding of methylesterase, carbonic anhydrase, several isoenzymes of glutathione S-transferase, chloroplast thioredoxin-ra1, some enzymes of the Krebs cycle, and a number of other proteins, including those with unknown functions, have been obtained. In this regard, the hypothesis of multinodular (decentralized) SA perception by a plant cell is discussed. In addition to specific proteins, calcium ions, reactive oxygen species (ROS), nitric oxide and hydrogen sulfide are involved in SA signaling (See Fig. 2). However, the relationships between most of these mediators during SA signal transduction have not been sufficiently studied. We found out that calcium ions in signaling chains are located both below the SA (involved in the transduction of its signals) and above (involved in the induction of SA synthesis). We considered the participation of cationic channels of the CNGC type (cyclic nucleotide-gated calcium channels) in the activation of SA synthesis in plant cells under an action of stressors. The entry of calcium through them into the cytosol leads to the activation of calmodulin, and then protein kinases dependent on calmodulin and calcium. These calcium sensor proteins modulate the activity of transcription factors CBP60g and CAMTA3/SR1, which are positive regulators of the expression of isochorismate synthase gene and other genes that provide the process of SA synthesis. On the other hand, treatment of plants with exogenous SA or an increase in its content in cells due to stress-induced enhancement of synthesis leads to an increase in the concentration of cytosolic calcium, which is necessary for transduction of the SA signal into the genetic apparatus and the realization of its physiological effects. SA can also be involved in the implementation of action of signaling mediators such as ROS and nitric oxide. In this case, however, not all of their physiological effects are realized with the participation of SA. In particular, our work provides examples of the successful induction of salt tolerance of salicylate-deficient transformants of Arabidopsis NahG by the action of hydrogen peroxide and the nitric oxide donor sodium nitroprusside. On the other hand, ROS, nitric oxide and hydrogen sulfide can act as intermediaries in the implementation of the SA action. This review analyzes new information on the effect of SA on functioning of enzymatic systems that generate ROS (NADPH oxidase, extracellular peroxidase), hydrogen sulfide (L- and D-cysteine desulfhydrases) and that synthesize nitric oxide by the reductive and oxidative pathways. We considered the effects of enhancing stress-protective effect of SA on plants when combined with donors of signaling molecules-gasotransmitters. We noted that the low cost and environmental safety of SA as a natural compound should contribute to the expansion of the scope of its practical application, primarily as a growth regulator of stress-protective action. The paper contains 2 Figures and 94 References. The Authors declare no conflict of interest.

Download file
Counter downloads: 151

Keywords

salicylic acid, phytohormones, reactive oxygen species, calcium, nitric oxide, hydrogen sulfide, antioxidant system, resistance

Authors

NameOrganizationE-mail
Kolupaev Yuriy E.Dokuchaev Kharkiv National Agrarian University; Karazin Kharkiv National Universityplant.biology.knau@gmail.com
Yastreb Tatiana O.Dokuchaev Kharkiv National Agrarian Universityplant.biology.knau@gmail.com
Polyakov Aleksey K.Dokuchaev Kharkiv National Agrarian Universityplant.biology.knau@gmail.com
Dmitriev Alexander P.Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukrainedmitriev.ap@gmail.com
Всего: 4

References

Raskin I. Salicylate, a new plant hormone // Plant Physiology. 1992. Vol. 99, № 3. PP 799803. https://doi.org/10.1104/pp.99.3.799
Vlot A.C., Dempsey D.A., Klessig D.F. Salicylic acid, a multifaceted hormone to combat disease // Annual Review of Phytopathology. 2009. Vol. 47. PP. 177-206. https://doi.org/10.1146/annurev.phyto.050908.135202
Saleem M., Fariduddin Q., Janda T. Multifaceted role of salicylic acid in combating cold stress in plants: A review // Journal of Plant Growth Regulation. 2020. https://doi.org/10.1007/s00344-020-10152-x
Dat J., Lopez-Delgado H., Foyer C., Scott I. Effects of salicylic acid on oxidative stress and thermotolerance in tobacco // Journal of Plant Physiology. 2000. Vol. 156, № 5-6. PP. 659-665. https://doi.org/10.1016/S0176-1617(00)80228-X
Larkindale J., Hall J., Knight M., Vierling E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance // Plant Physiology. 2005. Vol. 138. PP. 882-897. https://doi.org/10.1104/pp.105.06225
Borsani O., Valpuesta V, Botella M. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings // Plant Physiology. 2001. Vol. 126. PP. 1024-1030. https://doi.org/10.1104/pp.126.3.1024
Molina A., Bueno P, Marlin M., Rodriguez-Rosales M., Belver A., Venema K., Danaire J. Involvement of endogenous salicylic acid content lipoxygenase and antioxidant enzyme activities in response of tomato cell suspension cultures to NaCl // New Phycologist. 2002. Vol. 156, № 3. PP. 409-415. https://doi.org/10.1046/j.1469-8137.2002.00527.x
Rao M., Davis R. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid // Plant Journal. 1999. Vol. 17, № 6. PP 603-614. https://doi.org/10.1046/j.1365-313x.1999.00400.x
Chakraborty N., Sarkar A., Acharya K. Multifaceted roles of salicylic acid and jasmonic acid in plants against abiotic stresses // Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives / eds. by A. Roychoudhury, D.K. Tripathi. John Wiley & Sons Ltd., 2020. PP 374-387. https://doi.org/10.1002/9781119552154.ch18
Santisree P., Jalli L.C.L., Bhatnagar-Mathur P., Sharma K.K. Emerging roles of salicylic acid and jasmonates in plant abiotic stress responses // Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives / eds. by A. Roychoudhury, D.K. Tripathi. John Wiley & Sons Ltd., 2020. PP. 342-373. https://doi.org/10.1002/9781119552154.ch17-11
Kolupaev Yu.E., Karpets Yu.V., Beschasniy S.P., Dmitriev A.P. Gasotransmitters and their role in adaptive reactions of plant cells // Cytology and Genetics. 2019. Vol. 53, № 5. PP. 392-406. https://doi.org/10.3103/S0095452719050098
Khan M.N., Mobin M., Abbas Z.K. Nitric oxide and high temperature stress: A physiological perspective. // Nitric Oxide Action in Abiotic Stress Responses in Plants, eds. Khan M.N. et al. Switzerland: Springer International Publishing, 2015. PP. 77-93. https://doi.org/10.1007/978-3-319-17804-2_5
He H., He L. The role of carbon monoxide signaling in the responses of plants to abiotic stresses // Nitric Oxide. 2014. Vol. 42. PP. 40-43. https://doi.org/10.1016/j.niox.2014.08.011
Колупаев Ю.Е., Ястреб Т.О. Сероводород и адаптация растений к действию абиотических стрессоров // Вестник Томского государственного университета. Биология. 2019. № 48. С. 158-190. https://doi.org/10.17223/19988591/48/8
Колупаев Ю.Е., Фирсова Е.Н., Ястреб Т.О., Рябчун Н.И., Кириченко В.В. Влияние донора сероводорода на состояние антиоксидантной системы и устойчивость растений пшеницы к почвенной засухе // Физиология растений. 2019. Т. 66, № 1. С. 26-34. doi: https://doi.org/10.1134/S0015330319010081
Banerjee A., Tripathi D.K., Roychoudhury A. Hydrogen sulphide trapeze: Environmental stress amelioration and phytohormone crosstalk // Plant Physiology and Biochemistry. 2018. Vol. 132. PP. 46-53. https://doi.org/10.1016/j.plaphy.2018.08.028
Pokotylo I., Kravets V, Ruelland E. Salicylic acid binding proteins (SABPs): The hidden forefront of salicylic acid signaling // International Journal of Molecular Sciences. 2019. Vol. 20. Art. 4377. https://doi.org/10.3390/ijms20184377
Mou Z., Fan W., Dong X. Inducers of plant systemic acquired resistance regulate npr1 function through redox changes // Cell. 2003. Vol. 113, № 7. PP. 935-944. https://doi.org/10.1016/s0092-8674(03)00429-x
Wu Y, Zhang D., Chu J.Y, Boyle P., Wang Y, Brindle I.D., De Luca V., Despres C. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid // Cell Reports. 2012. Vol. 1. PP. 639-647. https://doi.org/10.1016/j.celrep.2012.05.008
Kwon D.-J., Jin H., Kang M.-J., Yun S.-H., Choi S.-M., Noh Y-S., Noh B. Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis // Nucleic Acids Research. 2018. Vol. 46, № 22. PP. 11712-11725. https://doi.org/10.1093/nar/gky847
Manohar M., Tian M., Moreau M., Park S.-W., Choi H.W., Fei Z., Friso G., Asif M., Manosalva P., von Dahl C.C., Shi K., Ma S., Dinesh-Kumar S.P., O’Doherty I., Schroeder F.C., van Wijk K.J., Klessig D.F. Identification of multiple salicylic acid-binding proteins using two high throughput screens // Frontiers in Plant Science. 2015. Vol. 5, Art. 777. https://doi.org/10.3389/fpls.2014.00777
Chen Z., Ricigliano J.W., Klessig D.F. Purification and characterization of a soluble salicylic acid-binding protein from tobacco // Proceedings of the National Academy of Sciences of the USA. 1993. Vol. 90. PP. 9533-9537. https://doi.org/10.1073/pnas.90.20.9533
Dempsey D.A., Shah J., Klessig D.F. Salicylic acid and disease resistance in plants // Critical Reviews in Plant Sciences. 1999. Vol. 18. PP. 547-575. https://doi.org/10.1080/07352689991309397
Overmyer K., Brosche M., Kangasjarvi J. Reactive oxygen species and hormonal control of cell death // Trends in Plant Science. 2003. Vol. 8, № 7. PP. 335-342. https://doi.org/10.1016/S1360-1385(03)00135-3
Ding Y, Sun T., Ao K., Peng Y, Zhang Y, Li X., Zhang Y Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity // Cell. 2018. Vol. 173. PP. 1454-1467. https://doi.org/10.1016/j.cell.2018.03.044
Tada Y., Spoel S.H., Pajerowska-Mukhtar K., Mou Z., Song J., Wang C., Zuo J., Dong X. Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins // Science. 2008. Vol. 321. PP. 952-956. https://doi.org/10.1126/science.1156970
Pedranzani H., Vigliocco A. Evaluation of jasmonic acid and salicylic acid levels in abiotic stress tolerance: Past and present // Mechanisms Behind Phytohormonal Signalling and Crop Abiotic Stress Tolerance / eds. by V.P. Singh et al. N.Y. : Nova Science Publishers, 2017. PP. 329-370.
Тарчевский И.А. Компартментация салицилат-индуцируемых белков (обзор) // Прикладная биохимия и микробиология. 2014. Т. 50, № 4. С. 374-382.
Castello M.J., Medina-Puche L., Lamilla J., Tornero P. NPR1 paralogs of Arabidopsis and their role in salicylic acid perception // PLoS ONE. 2018. Vol. 13, e0209835. https://doi.org/10.1371/journal.pone.0209835
Kim M.C., Chung W.S., Yun D., Cho M.J. Calcium and calmodulin-mediated regulation of gene expression in plants // Molecular Plant. 2009. Vol. 2, № 1. PP. 13-21. https://doi.org/10.1093/mp/ssn091
Kolupaev Yu.E., Karpets Yu.V, Dmitriev A.P. Signal mediators in plants in response to abiotic stress: calcium, reactive oxygen and nitrogen species // Cytology and Genetics. 2015. Vol. 49, № 5. PP. 338-348. https://doi.org/10.3103/S0095452715050047
Johnson J.M., Reichelt M., Vadassery J., Gershenzon J., Oelmuller R. An Arabidopsis mutant impaired in intracellular calcium elevation is sensitive to biotic and abiotic stress // BMC Plant Biology. 2014. Vol. 14, Art. 162. https://doi.org/10.1186/1471-2229-14-162
Rai K.K., Pandey N., Rai S.P. Salicylic acid and nitric oxide signaling in plant heat stress // Physiologia Plantarum. 2020. Vol. 168, № 2. PP. 241-255. https://doi.org/10.1111/ppl.12958
Wang L.-J., Li S.-H. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants // Plant Science. 2006. Vol. 170, № 4. PP. 685-694. https://doi.org/10.1016/j.plantsci.2005.09.005
Fan M., Sun X., Xu N., Liao Z., Li Y, Wang J., Fan Y, Cui D., Li P., Miao Z. Integration of deep transcriptome and proteome analyses of salicylic acid regulation high temperature stress in Ulva prolifera // Scientific Reports. 2017. Vol. 7, Art. 11052. https://doi.org/10.1038/s41598-017-11449-w
Khokon A.R., Okuma E., Hossain M.A., Munemasa S., Uraji M., Nakamura Y, Mori I.C., Murata Y. Involvement of extracellular oxidative burst in salicylic acidinduced stomatal closure in Arabidopsis // Plant, Cell & Environment. 2011. Vol. 34. PP. 434-443. https://doi.org/10.1111/j.1365-3040.2010.02253.x
Prodhan M.Y, Munemasa S., Nahar M.N.N., Nakamura Y, Murata Y Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway // Plant Physiology. 2018. Vol. 178. PP. 441-450. www.plantphysiol.org/cgi/doi/10.1104/pp.18.00321
Kohli S.K., Handa N., Gautam V, Bali S., Sharma A., Khanna K., Arora S., Thukral K.A., Ohri P., Karpets Y., Kolupaev Y., Bhardwaj R. ROS signaling in plants under heavy metal stress // Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress / eds. by M.I.R. Khan, N.A. Khan. Singapore : Springer Nature, 2017. PP. 185-214. https://doi.org/10.1007/978-981-10-5254-5_8
Miller E.W., Dickinson B.C., Chang C.J. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling // Proceedings of the National Academy of Sciences of the USA. 2010. Vol. 107, № 36. PP. 15681-15686. https://doi.org/10.1073/pnas.1005776107
Quan L.-J., Zhang B., Shi W.-W., Li H.-Y. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network // Journal of Integrative Plant Biology. 2008. Vol. 50, № 1. PP. 2-18. https://doi.org/10.1111/j.1744-7909.2007.00599.x
Ястреб Т. О., Колупаев Ю.Е., Луговая А.А., Дмитриев А.П. Индуцирование пероксидом водорода солеустойчивости салицилат-дефицитных трансформантов арабидопсиса NahG // Прикладная биохимия и микробиология. 2017. Т. 53, № 6. С. 635-641. https://doi.org/10.7868/S0555109917060149
van Wees S.C.M., Glazebrook J. Loss of non-host resistance of Arabidopsis NahG to Pseudomonas syringae pv. phaseolicola is due to degradation products of salicylic acid // Plant Journal. 2003. Vol. 33, № 4. PP. 733-742. https://doi.org/10.1046/j.1365-313x.2003.01665.x
Horvath E., Janda T., Szalai G., Paldi E. In vitro salicylic acid inhibition of catalase activity in maize: differences between the isozymes and a possible role in the induction of chilling tolerance // Plant Science. 2002. Vol. 163, № 6. PP. 1129-1135. https://doi.org/10.1016/S0168-9452(02)00324-2
Geetha H.M., Shetty H.S. Expression of oxidative burst in cultured cells of pearl millet cultivars against Sclerospora graminicola inoculation and elicitor treatment // Plant Science. 2002. Vol. 163, № 3. PP. 653-660. https://doi.org/10.1016/S0168-9452(02)00176-0
La V.H., Lee B.-R., Islam M.T., Park S.-H., Jung H., Bae D.W., Kim T.-H. Characterization of salicylic acid-mediated modulation of the drought stress responses: Reactive oxygen species, proline, and redox state in Brassica napus // Environmental and Experimental Botany. 2019. Vol. 157. PP. 1-10. https://doi.org/10.1016/j.envexpbot.2018.09.013
Колупаев Ю.С., Ястреб Т.О., Швиденко М.В., Карпець Ю.В. Вплив саліциловоі і янтарноі кислот на утворення активних форм кисню в колеоптилях пшениці // Украінський біохімічний журнал. 2011. Т. 83, № 5. С. 82-88.
Колупаев Ю.Е., Ястреб Т.О., Швиденко Н.В., Карпец Ю.В. Индукция теплоустойчивости колеоптилей пшеницы салициловой и янтарной кислотами: связь эффектов с образованием и обезвреживанием активных форм кислорода // Прикладная биохимия и микробиология. 2012. Т. 48, № 5. С. 550-556.
Minibayeva F.V., Gordon L.K., Kolesnikov O.P., Chasov A.V. Role of extracellular peroxidase in the superoxide production by wheat root cells // Protoplasma. 2001. Vol. 217. PP. 125-128. https://doi.org/10.1007/BF01289421
Minibayeva F., Kolesnikov O., Chasov A., Beckett R.P., Luthje S., Vylegzhanina N., Buck F., Bottger M. Wound-induced apoplastic peroxidase activities: their roles in the production and detoxification of reactive oxygen species // Plant, Cell & Environment. 2009. Vol. 32. P. 497-508. https://doi.org/10.1111/j.1365-3040.2009.01944.x
Mori I.C., Pinontoan R., Kawano T., Muto S. Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba // Plant Cell Physiol. 2001. Vol. 42. PP. 1383-1388. https://doi.org/10.1093/pcp/pce176
Miura K., Okamoto H., Okuma E., Shiba H., Kamada H., Hasegawa P.M., Murata Y. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis // Plant J. 2013. Vol. 73. PP. 91-104. https://doi.org/10.1111/tpj.12014
Kalachova T., Iakovenko O., Kretinin S., Kravets V Involvement of phospholipase D and NADPH-oxidase in salicylic acid signaling cascade // Plant Physiology and Biochemistry. 2013. Vol. 66. PP. 127-133. http://dx.doi.org/10.1016/j.plaphy.2013.02.006
Belt K., Huang S., Thatcher L.F., Casarotto H., Singh K.B., Van Aken O., Millar A.H. Salicylic acid-dependent plant stress signaling via mitochondrial succinate dehydrogenase // Plant Physiology. 2017. Vol. 173. PP. 2029-2040. https://doi.org/10.1104/pp.16.00060
Mur L.A.J., Kenton P., Atzorn R., Miersch O., Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death // Plant Physiology. 2006. Vol. 140. PP. 249-262. https://doi.org/10.1104/pp.105.072348
Corpas F.J., Barroso J.B. Nitric oxide synthase-like activity in higher plants // Nitric Oxide. 2017. Vol. 68. PP. 5-6. https://doi.org/10.1016/j.niox.2016.10.009
Gupta K.J., Kaiser W.M. Production and scavenging of nitric oxide by barley root mitochondria // Plant and Cell Physiology. 2010. Vol. 51. PP. 576-584. https://doi.org/10.1093/pcp/pcq022
Farnese F.S., Menezes-Silva P.E., Gusman G.S., Oliveira J.A. When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress // Frontiers in Plant Science. 2016. Vol. 7, Art. 471. https://doi.org/10.3389/fpls.2016.00471
Gupta K.J., Hancock J.T., Petrivalsky M., Kolbert Z., Lindermayr C., Durner J., Barroso J.B., Palma J.M., Brouquisse R., Wendehenne D., Corpas F.J., Loake G.J. Recommendations on terminology and experimental best practice associated with plant nitric oxide research. New Phytologist. 2020. Vol. 225. PP. 1828-1834. https://doi.org/10.1111/nph.16157
Durner J., Wendehenne D., Klessig D.F. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP ribose // Proceedings of the National Academy of Sciences of the USA. 1998. Vol. 95, № 17. PP. 10328-10333. https://doi.org/10.1073/pnas.95.17.10328
Song F., Goodman R.M. Activity of nitric oxide is dependent on, but is partially required for function of, salicylic acid in the signaling pathway in tobacco systemic acquired resistance // Molecular Plant-Microbe Interactions. 2001. Vol. 14, № 12. PP. 1458-1462. https://doi.org/10.1094/MPMI.2001.14.12.1458
Chun H.J., Park H.C., Koo S.C., Lee J.H., Park C.Y., Choi M.S., Kang C.H., Baek D., Cheong Y.H., Yun D.-J., Chung W.S., Cho M.J., Kim M.C. Constitutive expression of mammalian nitric oxide synthase in tobacco plants triggers disease resistance to pathogens // Molecular Cell. 2012. Vol. 34. PP. 463-471. https://doi.org/10.1007/s10059-012-0213-0
Kovacs I., Durner J., Lindermayr C. Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana // New Phytologist. 2015. Vol. 208. PP. 860-872. https://doi.org/10.1111/nph.13502
Klessig D.F., Durner J., Noad R., Navarre D.A., Wendehenne D., Kumar D., Zhou J.M., Shah J., Zhang S., Kachroo P., Trifa Y, Pontier D., Lam E., Silva H. Nitric oxide and salicylic acid signaling in plant defense // Proceedings of the National Academy of Sciences of the USA. 2000. Vol. 97, № 16. PP. 8849-8855. https://doi.org/10.1073/pnas.97.16.8849
Yastreb T.O., Karpets Yu.V., Kolupaev Yu.E., Dmitriev A.P. Induction of salt tolerance in salicylate-deficient NahG Arabidopsis transformants using the nitric oxide donor // Cytology and Genetics. 2017. Vol. 51, № 2. PP. 134-141. https://doi.org/10.3103/S0095452717020086
Grun S., Lindermayr C., Sell S., Durner J. Nitric oxide and gene regulation in plants // Journal of Experimental Botany. 2006. Vol. 57, № 3. PP. 507-516. https://doi.org/10.1093/jxb/erj053
Klepper L. NOx evolution by soybean leaves treated with salicylic acid and selected derivatives // Pesticide Biochemistry and Physiology. 1991. Vol. 39, № 1. P. 43-48. https://doi.org/10.1016/0048-3575(91)90212-5
Tewari R.K., Paek K.Y Salicylic acid-induced nitric oxide and ROS generation stimulate ginsenoside accumulation in Panax ginseng roots // Journal of Plant Growth Regulation. 2011. Vol. 30. PP. 396-404. https://doi.org/10.1007/s00344-011-9202-3
Gemes K., Poor P., Horvath E., Kolbert Z., Szopko D., Szepesi A., Tari I. Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity // Physiologia Plantarum. 2011. Vol. 142, № 2. PP. 179-192. https://doi.org/10.1111/j.1399-3054.2011.01461.x
Карпец Ю.В., Колупаев Ю.Е., Косаковская И.В. Оксид азота и пероксид водорода как сигнальные посредники при индуцировании теплоустойчивости проростков пшеницы экзогенными жасмоновой и салициловой кислотами // Физиология растений и генетика. 2016. Т 48. № 2. С. 158-166. https://doi.org/10.15407/frg2016.02.158
Dubovskaya L.V., Bakakina Y.S., Kolesneva E.V., Sodel D.L., McAinsh M.R., Hetherington A.M., Volotovski I.D. cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1 // New Phytologist. 2011. Vol. 191, № 1. PP 57-69. https://doi.org/10.1111/j.1469-8137.2011.03661.x
Shan C., Wang Y Exogenous salicylic acid-induced nitric oxide regulates leaf water condition through root osmoregulation of maize seedlings under drought stress // Brazilian Journal of Botany. 2017. Vol. 40, № 2. PP. 591-597. https://doi.org/10.1007/s40415-016-0355-y
Shao R.X., Xin L.F., Guo J.M., Zheng H.F., Mao J., Han X.P., Jia L., Jia S.J., Du C.G., Song R., Yang Q.H., Elmore R.W. Salicylic acid-induced photosynthetic adaptability of Zea mays L. to polyethylene glycol-simulated water deficit is associated with nitric oxide signaling // Photosynthetica. 2018. Vol. 56. PP. 1370-1377. https://doi.org/10.1007/s11099-018-0850-4
Li X., Zhang L., Ahammed G.J., Li Y-T., Wei J.-P., Yan P., Zhang L.-P, Han X., Han W.-Y Salicylic acid acts upstream of nitric oxide in elevated carbon dioxide-induced flavonoid biosynthesis in tea plant (Camellia sinensis L.) // Environmental and Experimental Botany. 2019. Vol. 161. PP. 367-374. https://doi.org/10.1016/j.envexpbot.2018.11.012
Delledonne М., Zeier J., Marocco A., Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersen-sitive disease resistance response // Proceedings of the National Academy of Sciences of the USA. 2001. Vol. 98. PP. 1345413459. https://doi.org/10.1016/j.envexpbot.2018.11.012
Hao F., Zhao S., Dong H., Zhang H., Sun L., Miao C. Nial and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis // Journal of Integrative Plant Biology. 2010. Vol. 52, № 3. PP. 298-307. https://doi.org/10.1111/j.1744-7909.2010.00920.x
Rai K.K., Rai N., Aamir M., Tripathi D., Rai S.P. Interactive role of salicylic acid and nitric oxide on transcriptional reprogramming for high temperature tolerance in Lablab purpureus L.: Structural and functional insights using computational approaches // Journal of Biotechnology. 2020. Vol. 309. PP. 113-130. https://doi.org/10.1016/j.jbiotec.2020.01.001
Esim N., Atici O. Effects of exogenous nitric oxide and salicylic acid on chilling-induced oxidative stress in wheat (Triticum aestivum) // Frontiers in Life Science. 2015. Vol. 8, № 2. РР 124-130. https://doi.org/10.1080/21553769.2014.998299
Горелова Е.И., Шкляревский М.А., Рябчун Н.И., Кабашникова Л.Ф., Колупаев Ю.Е. Комбинированное влияние салициловой кислоты и донора оксида азота на развитие индуцированной закаливанием морозоустойчивости проростков пшеницы // Вісник Харківського національною аграрного університету. Серія Біологія. 2020. № 2 (50). С. 93-104. https://doi.org/10.35550/vbio2020.02.093
Колупаев Ю.Е., Карпец Ю.В., Ястреб Т.О., Луговая А.А. Комбинированное влияние салициловой кислоты и донора оксида азота на стресс-протекторную систему растений пшеницы в условиях засухи // Прикладная биохимия и микробиология. 2018. Т 54, № 4. С. 400-407. https://doi.org/10.7868/S0555109918040098
Chavoushia M., Najafia F., Salimia A., Angaji S.A. Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside // Industrial Crops & Products. 2019. Vol. 134. PP. 168-176. https://doi.org/10.1016/j.indcrop.2019.03.071
Ahanger M.A., Aziz U., Alsahli A.A., Alyemeni M.N., Ahmad P. Influence of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ascorbate-glutathione cycle in salt stressed Vigna angularis // Biomolecules. 2020. Vol. 10. Art. 42. https://doi.org/10.3390/biom10010042
Yadu S., Dewangan T.L., Chandrakar V, Keshavkant S. Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. // Physiology and Molecular Biology of Plants. 2017. Vol. 23, № 1. PP. 43-58. https://doi.org/10.1007/s12298-016-0394-7
Singh S., Kumar V, Kapoor D., Kumar S., Singh S., Dhanjal D.S., Datta S., Samuel J., Dey P., Wang S., Prasad R., Singh J. Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions // Physiologia Plantarum. 2020. Vol. 168, № 2. PP. 301-317. https://doi.org/10.1111/ppl.13002
Romero L.C., Garda I., Gotor C. L-cysteine desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol // Plant Signaling & Behavior. 2013. Vol. 8, № 5. e24007. https://doi.org/10.4161/psb.24007
Guo H., Xiao T., Zhou H., Xie Y, Shen W. Hydrogen sulfide: a versatile regulator of environmental stress in plants // Acta Physiologiae Plantarum. 2016. Vol. 38, Art. 16. https://doi.org/10.1007/s11738-015-2038-x
Pandey A.K., Gautam A. Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress // Physiologia Plantarum. 2020. Vol. 168. PP. 511-525. https://doi.org/10.1111/ppl.13064
Li H., Li M., Wei X., Zhang X., Xue R., Zhao Y, Zhao H. Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves // Molecular Genetics and Genomics. 2017. Vol. 292. PP. 1091-1110. https://doi.org/10.1007/s00438-017-1330-4
Li Z.G., Long W.B., Yang S.Z., Wang Y.C., Tang J.H., Chen T. Involvement of sulfhydryl compounds and antioxidant enzymes in H2S-induced heat tolerance in tobacco (Nicotiana tabacum L.) suspension-cultured cells // In Vitro Cellular & Developmental Biology -Plant. 2015. Vol. 51. PP. 428-437. https://doi.org/10.1007/s11627-015-9705-x
Li Z.G., Long W.B., Yang S.Z., Wang Y.C., Tang J.H., Wen L., Zhu B., Min X. Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures // Acta Physiologiae Plantarum. 2015. Vol. 37, Art. 219. https://doi.org/10.1007/s11738-015-1971-z
Карпец Ю.В., Шкляревский М.А., Горелова Е.И., Колупаев Ю.Е. Участие сероводорода в индуцировании салициловой кислотой антиоксидантной системы корней проростков пшеницы и их теплоустойчивости // Прикладная биохимия и микробиология. 2020. Т 56, № 4. С. 383-389. https://doi.org/10.31857/S0555109920040078
Pan D.-Y, Fu X., Zhang X.-W., Liu F.-J., Bi H.-G., Ai X.-Z. Hydrogen sulfide is required for salicylic acid-induced chilling tolerance of cucumber seedlings // Protoplasma. 2020. Vol. 257. PP. 1543-1557. https://doi.org/10.1007/s00709-020-01531-y
Kaya C. Salicylic acid-induced hydrogen sulphide improves lead stress tolerance in pepper plants by upraising the ascorbate-glutathione cycle // Physiolgia Plantarum. 2020. https://doi.org/10.1111/ppl.13159
Zanganeh R., Rahmani F., Jamei R. Impacts of seed priming with salicylic acid and sodium hydrosulfide on possible metabolic pathway of two amino acids in maize plant under lead stress // Molecular Biology Research Communications. 2018. Vol. 7, № 2. PP. 83-88. https://doi.org/10.22099/mbrc.2018.29089.1317
Zanganeh R., Jamei R., Rahmani F. Pre-sowing seed treatment with salicylic acid and sodium hydrosulfide confers Pb toxicity tolerance in maize (Zea mays L.) // Ecotoxicology and Environmental Safety. 2020. Vol. 206, Art. 111392. https://doi.org/10.1016/).ecoenv.2020.111392
 Salicylic acid and formation of plant adaptive responses to abiotic stressors: role of signaling network components | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. №  55. DOI: 10.17223/19988591/55/8

Salicylic acid and formation of plant adaptive responses to abiotic stressors: role of signaling network components | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. № 55. DOI: 10.17223/19988591/55/8

Download full-text version
Counter downloads: 194