Occurrence and characteristics of Bacillus cereus group bacterial atmospheric aerosols in Novosibirsk region | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. № 56. DOI: 10.17223/19988591/56/3

Occurrence and characteristics of Bacillus cereus group bacterial atmospheric aerosols in Novosibirsk region

The microbial diversity of atmospheric bioaerosols involves microorganisms that can cause allergic and infectious diseases or toxic effects. They include bacteria of the Bacillus cereus group (B. cereus, B. thuringiensis, B. anthracis, B. mycoides, B. pseudomycoides, etc.), which can result in diarrhea, pneumonia, meningitis, septicemia, and other infectious diseases. Accordingly, monitoring the presence of Bacillus cereus group bacteria in aerosols is critical. However, practically no data exist on Bacillus cereus and other cereus-group bacteria in southwestern Siberia’s poorly investigated atmospheric aerosol environment. Bacteria of the cereus group are capable of effective production of various biologically active compounds, with important implications for biotechnology; microorganism strains with new capabilities are being investigated. This study aimed to determine the occurrence and characteristics of B. cereus group bacteria in ground-level and high-altitude atmospheric aerosols in Novosibirsk region of southwestern Siberia, and to evaluate the biotechnological potential of the obtained microbial isolates. High-altitude atmospheric samples were collected over Karakan Pine Forest, approximately 50 km south ofNovosibirsk, at altitudes of7000, 5500, 4000, 2000, 1500, 1000, and 500 m, by aircraft sounding. Boundaries of the aircraft flight path: 54° 26'38'' N, 82° 30'47'' E; 54°10'55'' N, 81° 44'00'' E. Ground-level samples were collected at various sites in Koltsovo settlement, Novosibirsk region. Impingers with a flow rate of 50 L/min containing 50 ml of Hanks’ solution were used for air sampling. The obtained aerosol samples were sown on a set of nutrient media and incubated at 28-30°C and 6-10 °C. The titers of microorganisms in high-altitude and ground-level samples were determined in terms of 1 m3 of atmospheric air. Standard microbiological methods were employed to study the phenotypic characteristics of the identified microbial isolates. Lipolytic activity was determined on yolk agar and LB agarized medium containing fatty acid esters with 0.01% CaCl2. The substrates used were 1.0% monolaurate (tween-20) and monooleate (tween-80). Amylolytic activity of the cultures was determined by their isolation on starch-ammonia agar, and proteolytic activity by their ability to hydrolyse milk gelatin and casein (Maniatis T et al., 1984). The ability to hemolysis was taken into account when cultures were plated on LB medium with the addition of ram’s blood. Nuclease activity was studied on LB medium with the addition of Sigma DNA (USA) (Maniatis T et al., 1984). The content of plasmid DNA in the isolates was determined by screening according to Maniatis T et al. (1984). The capacity for RNAase secretion in culture medium (peptone - 9.27 g/l, yeast extract - 5 g/l, NaCl - 3.00; 10 ml of 50% glycerin, 2 ml of 20% glucose; pH 7.07.2) during cultivation of bacteria at 30 °С, for 18-24 h, was determined by the accumulation of acid-soluble products, formed upon hydrolysis of high-polymer RNA of yeast (1 mg/ml). Antibiotic activity of the studied strains was determined by cross-strics (Yasuda T et al., 1992) on LB medium at 37 °C. The following pathogenic test strains were used: Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Candida albicans 620, Klebsiella pneumoniae B-4894, Escherichia coli ATCC 25922, Salmonella typhimurium 2606, and Shigella sonnei 32 (collection of FSBI State Research Centre Vektor of the Rospotrebnadzor). The genetic analysis of bacterial isolates was performed using PCR with specific primers on 16S rRNA. The calculation of the number of cultivated microorganisms in the samples was carried out according to the Kerber method [Bottone EJ, 2010], and the number of microorganisms was averaged over three parallels of the inoculated samples. The annual average numbers of cultivated microorganisms were calculated as a mean ± the confidence interval at a significance level of 95% of t-Student’s (p < 0.05). Percentages of spore-forming cultured bacteria in aerosol samples varied significantly across the years of observation (1998-present): in high-altitude samples, the minimum and maximum were 0.5% (in 2005) and 55% (in 2011), respectively, and, in ground-level samples, the minimum and maximum were 0.1% (in 2002) and 83% (in 2016), respectively (See Fig. 1 and 2). Annual averages of total concentration of microorganisms ranged from < 1 to 5*105 CFU/m3. The number of cereus-group bacteria also varied significantly from sample to sample, with averages ranging from 0.01% to 6.5% of the total number of isolated microorganisms. A total of2.025 bacterial isolates, of which 62 formed endospores, were isolated from ground-level and high-altitude aerosol samples collected during the predominance of south-westerly winds from Kazakhstan in autumn 2016, and were characterized by increased dust-component content. Spore-forming bacteria were identified as belonging to the genera Bacillus, Paenibacillus, Brevibacillus, Lysinibacillus, and some others. Both high-altitude and ground-level aerosol samples were shown to contain bacteria of the cereus group: Bacillus cereus (Bc) and Bacillus thuringiensis (Bt), Bt ssp. kurstaki, Bt ssp. galleriae subspecies; Bt strains with indefinite serotype were also found. Notably, Bacillus anthracis species were not found (See Table 1). Screening for enzyme secretion revealed Bt and Bc strains with pronounced proteolytic, phosphatase, lipolytic, and amylolytic activities in a medium pH range from 5.0 to 9.0 (See Table 2). An atypical strain of B. thuringiensis Cb-527, which demonstrates high production of RNase, was isolated. All strains demonstrated hemolysis capability, were multi-resistant to antibiotics (resistant to 6-15 drugs (See Table 3), and suppressed the growth of the pathogenic yeast, Candida albicans, to varying degrees. The Bt Cb-527 strain, as well as several Bc strains, also effectively inhibited the growth of Gram-positive test strains of Staphylococcus aureus and Bacillus subtilis. Gram-negative bacterial test strains were low-sensitive to the action of metabolites of the studied Bc and Bt strains (See Table 4). In high-altitude and ground-level samples of the studied atmospheric aerosols, bacteria of the cereus group belonging to Bacillus cereus and Bacillus thuringiensis species were found in amounts ranging from 0.01 to 6.5% of the total number of cultured microorganisms isolated under experimental conditions. The presence of aggression enzymes such as phospholipases, hemolysins, proteases, and nucleolytic enzymes typical of representatives of these taxa, was found. We isolated Bc and Bt strains with high levels of secretion of enzymes and metabolites that possess antibiotic activity; these strains are promising as producers. The Bacillus thuringiensis Cb-527 strain (with a pronounced secretion of the RNase complex) can be used for the development of anti-RNA-containing virus drugs. The isolated Bc and Bt strains demonstrated multiple antibiotic resistance, which confirms literature data on the increasing prevalence of polyresistance among the identified natural microbial isolates. The paper contains 4 Figures, 4 Tables, and 41 References. The Authors declare no conflict of interest.

Download file
Counter downloads: 127

Keywords

enzymatic, antibiotic activity, spore-forming microorganisms, atmospheric bioaerosols, Bacillus thuringiensis, Bacillus cereus

Authors

NameOrganizationE-mail
Andreeva Irina S.State Scientific Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzorandreeva_is@vector.nsc.ru
Safatov Aleksandr S.State Scientific Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzorsafatov@vector.nsc.ru
Puchkova Larisa I.State Scientific Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzorpuchkova@vector.nsc.ru
Emelyanova Elena K.State Scientific Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzor; Novosibirsk State Medical Universityemelen1@yandex.ru
Solovyanova Nadezda A.State Scientific Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzorsolovyanova_na@vector.nsc.ru
Buryak Galina A.State Scientific Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzorburyak@vector.nsc.ru
Ternovoi Vladimir A.State Scientific Research Center of Virology and Biotechnology “Vector” of Rospotrebnadzortem@vector.nsc.ru
Всего: 7

References

Shah Mahmud R., Ilinskaya O.N. Antiviral activity of binase against pandemic influenza A (H1N1) virus // Acta Naturae. 2013.Vol. 5, № 4 (19). PP. 44-51. doi: 10.32607/20758251-2013-5-4-44-51
Андреева И.С., Закабунин А.С. Исследование внеклеточных нуклеотических ферментов штаммов Bacillus thuringiensis методом зимографии // Colloquium-Journal. 2017. № 2 (2). С. 7-14. URL: https://www.elibrary.ru/item.asp?id=28922173 (дата обращения: 16.11.2021).
Vilas-Boas G.T., Santos C.A. Conjugation in Bacillus : Insights into the plasmids exchange process // Bacillus thuringiensis Biotechnology / ed. by E. Sansinenea. Dordrecht : Springer, 2012. doi: 10.1007/978-94-007-3021-2_8
Silo-Suh L.A., Lethbridge B.J., Raffel S.J., He H., Clardy J., Handelsman J.O. Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85 // Applied and Environmental Microbiology. 1994. Vol. 60, № 6. PP. 2023-2030. doi: 0.1128/ aem.60.6.2023-2030.1994
Nakamura N., Nakano K., Sugiura N., Matsumura M. A novel cyanobacteriolytic bacterium, Bacillus cereus, isolated from a Eutrophic Lake // Journal of Bioscience and Bioengineering. 2003. Vol. 95, № 2. PP. 179-184. doi: 10.1016/s1389-1723(03)80125-1
Zheng D., Zeng Z., Xue B., Deng Y, Sun M., Tang Y-J., Ruan L. Bacillus thuringiensis produces the lipopeptide thumolycin to antagonize microbes and nematodes // Microbiological Research. 2018. Vol. 215. PP. 22-28. doi: 10.1016/j.micres.2018.06.004
Kumar S.N., Mohandas C., Nambisan B. Purification of an antifungal compound, cyclo(l-Pro-d-Leu) for cereals produced by Bacillus cereus subsp. thuringiensis associated with entomopathogenic nematode // Microbiological Research. 2013. Vol. 168, № 5. PP 278288. doi: 10.1016/j.micres.2012.12.003
Yibar A., Qetinkaya F., Soyutemiz E., Yaman G. Prevalence, enterotoxin production and antibiotic resistance of Bacillus cereus isolated from milk and cheese // Kafkas Universitesi Veteriner Fakultesi Dergisi. 2017. Vol. 23, № 4. PP. 635-642. doi: 10.9775/kvfd.2017.17480
Bottone E.J. Bacillus cereus, a volatile human pathogen // Clinical Microbiology Review. 2010. Vol. 23, № 2. PP. 382-398. doi: 10.1128/CMR00073-09
Страчунский Л.С., Козлов С.Н. Современная антимикробная химиотерапия. Руководство для врачей. М. : Боргес, 2002. 432 c.
Ашмарин И.П., Воробьев А.А. Статистические методы в микробиологических исследованиях. Л. : Медгиз, 1962. 180 с.
Руководство по медицинской микробиологии. Частная медицинская микробиология и этиологическая диагностика инфекций. Кн. II / под ред. А.С. Лабинской, H. Н. Костюковой, С.М. Ивановой. М. : БИНОМ, 2010. 1152 с.
Wang Y, Qian P.-Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies // PLoS One. 2009. Vol. 10. Articlee 7401. doi: 10.1371/journal.pone.0007401
Singh V, Haque S., Singh H., Verma J., Vibha K., Singh R., Jawed A., Tripathi C.R.M. Issolation, Screening, and Identification of Novel Isolates of Actinomycetes from India for Antimicrobial Applications // Front. Microbiol. 2016. № 7. РР 1-9. doi: 10.3389/ fmicb.2016.01921
Yasuda T., Nadano D., Tenjo E., Takeshita H., Kishi K. The zymogram method for detection of ribonucleases after isoelectric focusing: analysis of multiple forms of human, bovine, and microbial enzymes // Anal. Biochem. 1992. № 206 (1). РР 172-177. doi: 10.1016/s0003-2697(05)80029-6
Bergey’s Manual of Systematic Bacteriology. Volume 3. The Firmicutes / еds by P. Vos, G. Garrity, D. Jones, N.R. Krieg, W. Ludwig, F.A. Rainey, W.B. Whitman. Springer-Verlag, 2009. 1450 p.
Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. М. : Мир, 1984. 480 с.
Методы общей бактериологии. Т. 3 / под ред. Ф. Герхарда, Р. Мюррэя, Р Костилоу, Ю. Нестера, В. Вуда, Н. Крита, Г. Филипса. М. : Мир, 1984. 264 с.
Gusareva E.S., Gaultier N.P.E., Premkrishnan B.N.V., Kee C., Lim S.B.Y., Heinle C.E., Purbojati R.W., Nee A.P., Loha S.R., Yanqing K., Kharkov V.N., Drautz-Moses D.I., Stepanov V.A., Schuster S.C. Taxonomic composition and seasonal dynamics of the air microbiome in West Siberia // Scientific Reports. 2020. Vol. 10, № 1. PP. 21515. doi: 10.1038/s41598-020-78604-8
Andreeva I.S., Safatov A.S., Morozova V.V., Tikunova N.V., Emelyanova E.K., Solovyanova N.A., Babkin I.V., Buryak G.A., Puchkova L.I. Saprophytic and pathogenic yeasts in atmospheric aerosols of Southwestern Siberia // Atmospheric and Oceanic Optics. 2020. Vol. 33, № 5. PP. 505-511. doi: 10.1134/S1024856020050024
Андреева И.С., Сафатов А.С., Пучкова Л.И., Емельянова Е.К., Буряк Г.А., Олькин С.Е., Резникова И.К., Охлопкова О.В. Культивируемые микроорганизмы в высотных пробах аэрозолей воздуха севера Сибири в ходе самолетного зондирования атмосферы // Вестник Нижневартовского государственного университета. 2019. № 2. С. 3-11. doi: 10.36906/2311-4444/19-2/01; URL: https://e.lanbook.com/joumal/issue/312018 (дата обращения: 08.11.2021).
Safatov A.S., Andreeva I.S., Buryak G.A., Marchenko V.V., Ol’kin S.E., Reznikova I.K., Repin V.E., Sergeev A.N., Belan B.D., Panchenko M.V. Tropospheric bioaerosols of Southwestern Siberia: Their concentrations and variability, distributions and long-term dynamics // Nucleation and Atmospheric Aerosols / eds by C.D. O’Dowd, P.E. Wagner. Dordrecht : Springer, 2007. PP. 741-745. doi: 10.1007/978-1-4020-6475-3_146
Yeo I.C., Lee N.K., Cha C.-J., Hahm YT. Narrow antagonistic activity of antimicrobial peptide from Bacillus subtilis SCK-2 against Bacillus cereus // Journal of Bioscience and Bioengineering. 2011. Vol. 112, № 4. PP. 338-344. doi: 10.1016/j.jbiosc.2011.06.011
Мефёд К.М., Осипова И.Г., Васильева Е.А. Результаты сравнительного исследования новых ветеринарных пробиотиков ирилис и пацифлор // Вестник Российского университета дружбы народов. Серия: Медицина. 2006. № 2. С. 27-31. URL: https://cyberleninka.ru/article/n/rezultaty-sravnitelnogo-issledovaniya-novyh-veterinarnyh-probiotikov-irilis-i-patsiflor/viewer (дата обращения: 08.11.2021).
Похиленко В.Д., Перелыгин В.В. Пробиотики на основе спорообразующих бактерий и их безопасность // Химическая и биологическая безопасность. 2007. № 2-3. С. 2041. URL: http://www.cbsafety.ru/rus/saf_32_2f.pdf (дата обращения: 08.11.2021).
Williams L.D., Burdock G.A., Jimenez G., Castillo M. Literature review on the safety of Toyocerin, a non-toxigenic and non-pathogenic Bacillus cereus var. toyoi preparation // Regulatory Toxicology and Pharmacology. 2009. Vol. 55, № 2. PP. 236-246. doi: 10.1016/j. yrtph.2009.07.009
Bottone E.J. Bacillus cereus, a Volatile Human Pathogen // Clinical Microbiology Reviews. 2010. Vol. 23, № 2. PP. 382-398. doi: 10.1128/CMR.00073-09
Ramarao N., Lereclus D., Sorokin A. The Bacillus cereus group // Molecular Medical Microbiology / eds by Y.-W. Tang, M. Sussman, D. Liu, I. Poxton, J. Schwartzman. Vol. 2, Chapter 59. New York : Elsevier, 2015. PP. 1041-1078.
Патогены насекомых: структурные и функциональные аспекты / под ред. В.В. Глупова. М. : Круглый год, 2001. 736 с.
Buehler A.J., Martin N.H., Boor K.J., Wiedmann M. Psychrotolerant spore-former growth characterization for the development of a dairy spoilage predictive model // Journal of Dairy Science. 2018. Vol. 101, № 8. PP. 6964-6981. doi: 10.3168/jds.2018-14501
Liu Y, Du J., Lai Q., Zeng R., Ye D., Xu J., Shao Z. Proposal of nine novel species of the Bacillus cereus group // International Journal of Systematic and Evolutionary Microbiology. 2017. Vol. 67, № 8. PP. 2499-2508. doi: 10.1099/ijsem.0.001821
Yoo K., Han I., Ko K.S., Lee T.K., Yoo H., Khan M.I., Tiedje J.M., Park J. Bacillus-dominant airborne bacterial communities identified during Asian dust events // Microbial Ecology. 2019. Vol. 78. PP. 677-687. doi: 10.1007/s00248-019-01348-0
Yang Y., Itahashi S., Yokobori S.I., Yamagishi A. UV-resistant bacteria isolated from upper troposphere and lower stratosphere // Biological Science in Space. 2008. Vol. 22. PP. 1825. doi: 10.2187/bss.22.18
Griffin D.W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health // Clinical Microbiology Reviews. 2007. Vol. 20, № 3. PP. 459-477. doi: 10.1128/CMR.00039-06
Griffin D.W. Terrestrial microorganisms at an altitude of 20,000 m in Earth’s atmosphere // Aerobiologia. 2000. Vol. 20, № 2. PP. 135-140. doi: 10.1023/B:AE R0.0000032948.84077.12
Kobayashi F., Maki T., Kakikawa M., Yamada M., Puspitasari F., Iwasaka Y Bioprocess of Kosa bioaerosols: Effect of ultraviolet radiation on airborne bacteria within Kosa (Asian dust) // Journal of Bioscience and Bioengineering. 2015. Vol. 119, № 5. PP. 570-579. doi: 10.1016/j.jbiosc.2014.10.015
Madsen A.M., Zervas A., Tendal K., Nielsen J.L. Microbial diversity in bioaerosol samples causing ODTS compared to reference bioaerosol samples as measured using Illumina sequencing and MALDI-TOF // Environmental Research. 2015. Vol. 140. PP. 255-267. doi: 10.1016/j.envres.2015.03.027
Akila M., Priyamvada H., Ravikrishna R., Gunthe S.S. Characterization of bacterial diversity and ice-nucleating ability during different monsoon seasons over a southern tropical Indian region // Atmospheric Environment. 2018. Vol. 191. PP. 387-394. doi: 10.1016/j.atmosenv.2018.08.026
Soleimani Z., Goudarzi G., Sorooshian A., Marzouni M.B., Maleki H. Impact of Middle Eastern dust storms on indoor and outdoor composition of bioaerosol // Atmospheric Environment. 2016. Vol. 138. PP. 135-143. doi: 10.1016/j.atmosenv.2016.05.023
Wei K., Zheng Y, Li J., Shen F., Zou Z., Fan H., Li X., Wu C., Yao M. Microbial aerosol characteristics in highly polluted and near-pristine environments featuring different climatic conditions// Science Bulletin. 2015. Vol. 60. PP. 1439-1447. doi: 10.1007/s11434-015-0868-y
Smets W., Moretti S., Denys S., Lebeer S. Airborne bacteria in the atmosphere: Presence, purpose, and potential // Atmospheric Environment. 2016. Vol. 139. PP. 214-221. doi: 10.1016/j.atmosenv.2016.05.038
 Occurrence and characteristics of <i>Bacillus cereus</i> group bacterial atmospheric aerosols in Novosibirsk region | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. №  56. DOI: 10.17223/19988591/56/3

Occurrence and characteristics of Bacillus cereus group bacterial atmospheric aerosols in Novosibirsk region | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2021. № 56. DOI: 10.17223/19988591/56/3

Download full-text version
Counter downloads: 233