Phenotypic diversity of macrophages in ovarian cancer
Ovarian cancer (OC) is one of the most common gynecological malignancies. OC has the worst prognosis and the highest mortality rate, not only amid gynecological cancers, but also compared to the most spread breast cancer. High mortality rate is associated to asymptomatic course of the disease, tumor evolution and high tumor aggressiveness. OC differs from other tumors in its ability to implantation metastasis through the peritoneal fluid. The frequency of metastasis is increased by the accumulation of ascitic fluid. Both tumor cells and stromal cells facilitate the accumulation of ascitic fluid. They secrete factors that elevate the permeability of the capillaries in the abdominal cavity for diverse proteins and fluid. The main factors involved in these processes are vascular endothelial growth factor (VEGF) and cytokines IL-6 and IL-8. An increased concentration of common protein leads to a violation of the normal oncotic pressure between the peritoneal fluid and plasma, followed by the flow of fluid into the abdominal cavity. In addition, tumor cells in peritoneal cavity disrupt lymph flow through blockage of lymphatic vessels that also contributes to the accumulation of excess fluid due to impaired reabsorption. Ascitic fluid consists of cellular components and products of their metabolism: cytokines, chemokines and growth factors. The cellular component of ascitic fluid includes tumor cells, stromal component and immune cells. Tumor cells detach from the primary tumor and enter the peritoneal cavity, where they move along with the flow. In ascitic fluid, tumor cells can be represented by free-floating single cells, but more often, they interact with each other or the surrounding stromal and immune components to form multicellular conglomerates - spheroids. The tendency to form spheroids is related to inability of single floating cells to survive due to anoikis - a specific type of apoptosis that occurs due to the interruption of cell adhesion. The tumor microenvironment (TME), where immune cells are one of the most important components, determines tumor progression and affects the effectiveness of chemotherapy. The key cells of innate immunity in the TME are tumor-associated macrophages (TAMs). In several OC patient cohorts, the balance of M1/M2 macrophages in tumor tissue has been shown to have a prognostic value for predicting metastasis and recurrence. A number of studies have demonstrated a positive correlation of the total number of CD68-positive TAMs in tumor tissue with a poor prognosis. A meta-analysis of nine studies including 794 patients found that a higher M1(iNOS+ or HLA-DR+)/M2(CD163+) ratio was associated with a favorable outcome in OC. In addition, an increased M1/M2 ratio predicted better progression-free survival (PFS) and 5-year survival for patients with OC. In contrast, lower PFS correlated with a high density of CD163+ TAMs and a higher CD163/CD68 ratio. The density CD206+ macrophage was not predictive, but a higher CD206+/CD68+ cell ratio was strongly associated with worse PFS and overall survival (OS). An association of specific subpopulations of macrophages, expressing various markers, with clinical and pathological parameters in OC has also been found. In the peripheral blood of OC patients, the proportion of PD-L1+ CD68+ cells among all CD68+ cells and the intensity of PD-L1 staining for CD68+ cells were significantly higher compared to the healthy group. Immunohistochemical and immunofluorescence analysis of ovarian tumor samples showed that a reduced M1(HLA-DR+ or iNOS+)/M2(CD163+ or VEGF+) ratio and an increased density of COX-2+ macrophages were predictors of poor survival. Microarray analysis showed that human TAMs express significantly higher levels of insulin-like growth factor 1 (IGF1) than undifferentiated myeloid cells. Under in vitro conditions, TAMs can enhance the proliferation and migration of ovarian tumor cells by increasing IGF1. The infiltration of CD163+TAMs correlates with higher expression of ZEB1, which controls the epithelial-mesenchymal transition (EMT) in OC cells. CD68+ TAM infiltration and HMGB1 expression strongly correlated with lymph node metastasis and poor survival. Macrophages in ascitic fluid reside both in a free unicellular state and as part of tumor spheroids, forming the core of the latter. The M2 subpopulation of macrophages is predominant in the composition of spheroids. Soluble factors produced by macrophages protect tumor cells from anoikis, prepare the premetastatic niche, and support tumor cell proliferation. The results of flow cytometry performed eight weeks after the injection of tumor cells into the peritoneal cavity of mice showed an increased accumulation of F4/80+, CD11b+ and CD68+ macrophages, expressing M2 macrophage markers (CD163, CD206, CX3CR1), in the peritoneal fluid. Analysis of patients' ascitic fluid revealed the presence of large spheroids composed of EGFR+ tumor cells surrounding EGF+ macrophages located in the center, thus explaining a possible model of spheroid formation. In ascitic fluid, EGF secreted by macrophages induces the migration of EGFR+ tumor cells. EGF promotes adhesion of EGFR+ tumor cells to macrophages through the interaction of ICAM1 molecules and аМв2 in-tegrin. Another mechanism of spheroid formation can be related to macrophage-produced CCL18 that activates the EMT in tumor cells. In vivo, tumor spheroids overexpressing ZEB1 (an EMT marker) and containing TAMs in their structure, demonstrated a rapid ability to disseminate. Transcriptomic analysis of tumor cells and TAMs isolated from the ascitic fluid of patients with high-grade serous ovarian cancer (HGSOC) showed several signaling molecules that ensure the interaction between tumor cells and macrophages. They include cytokines, that induce STAT3 signaling (IL-10, IL-6, LIF), and TGFe1, which are mainly expressed by TAMs, and WNT7A, expressed by tumor cells, as well as various genes belonging to the S100 family, chemokines, ephrins, and their receptors. TGFe1, tenascin C (TNC) and fibronectin (FN1) produced by TAMs in ascites activate tumor cell migration. The main factors produced by macrophages are shown in the Table. Thus, in ovarian cancer, TAMs have clinical significance both due to infiltration into the tumor mass and due to close interaction with tumor cells in ascitic fluid. Therefore, the search for new markers associated with TAMs is required to predict an effect of anti-cancer therapy and a prognosis of OC for individual patients. Understanding the mechanisms of macrophage-induced tumor progression will allow finding new potential targets for blocking metastasis to improve OC outcome.
Keywords
ovarian cancer,
tumor-associated macrophages,
ascites,
progression,
spheroidAuthors
Kazakova Anna D. | National Research Tomsk State University | a.kazakova99@mail.ru |
Rakina Militsa A. | National Research Tomsk State University | militsarakina@mail.ru |
Larionova Irina V. | National Research Tomsk State University; Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences | larionova0903irina@mail.ru |
Всего: 3
References
Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries // CA: A Cancer Journal for Clinicians. 2018. Vol. 68, № 6. PP. 394-424. doi: 10.3322/caac.21492
Злокачественные новообразования в России в 2020 году (Заболеваемость и смертность) / под ред. А. Д. Каприна, В. В. Старинского, А. О. Шахзадовой. М. : МНИОИ им. П. А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 252 с.
Ефимова О. А., Сафонова М. А. Эпидемиология рака яичников на ранних стадиях // Acta Medica Eurasica. 2018. № 4.
Спиридонова Н. В., Демура А. А., Щукин В. Ю. Оценка сопутствующей гинекологической патологии в группе пациенток репродуктивного возраста с опухолями и опухолевидными образованиями яичников // Медицинский алфавит. 2020. № 16. С. 10-14. doi: 10.33667/2078-5631-2020-16-10-14
Momenimovahed Z., Tiznobaik A., Taheri S., Salehiniya H. Ovarian cancer in the world: epidemiology and risk factors // International Journal of Women's Health. 2019. Vol. 11. PP. 287-299. doi: 10.2147/IJWH.S197604
Narod S. Can advanced-stage ovarian cancer be cured? // Nature Reviews Clinical Oncology. 2016. Vol. 13, № 4. PP. 255-261. doi: 10.1038/nrclinonc.2015.224
Matulonis U.A., Sood A.K., Fallowfield L., Howitt B.E., Sehouli J., Karlan B.Y. Ovarian cancer // Nature Reviews Disease Primers. 2016. № 2. A. 16061. doi: 10.1038/nrdp.2016.61
Reid B.M., Permuth J.B., Sellers T.A. Epidemiology of ovarian cancer: a review // Cancer Biology & Medicine. 2017. Vol. 14, № 1. PP. 9-32. doi: 10.20892/j.issn.2095-3941.2016.0084
Baci D., Bosi A., Gallazzi M., Rizzi M., Noonan D.M., Poggi A., Bruno A., Mortara L. The ovarian cancer tumor immune microenvironment (TIME) as target for therapy: a focus on innate immunity cells as therapeutic effectors // International Journal of Molecular Sciences. 2020. Vol. 21, № 9. A. 3125. doi: 10.3390/ijms21093125
Henderson J.T., Webber E.M., Sawaya G.F. Screening for ovarian cancer updated evidence report and systematic review for the US preventive services task force // Journal of the American Medical Association. 2018. Vol. 319, № 6. PP. 595-606. doi: 10.1001/jama.2017.21421
Osborn G., Stavraka C., Adams R., Sayasneh A., Ghosh S., Montes A., Lacy K.E., Kris-teleit R., Spicer J., Josephs D.H., Arnold J.N., Karagiannis S.N. Macrophages in ovarian cancer and their interactions with monoclonal antibody therapies // Clinical and Experimental Immunology. 2021. uxab020. doi: 10.1093/cei/uxab020
Larionova I., Tuguzbaeva G., Ponomaryova A., Stakheyeva M., Cherdyntseva N., Pavlov V., Choinzonov E., Kzhyshkowska J. Tumor-associated macrophages in human breast, colorectal, lung, ovarian and prostate cancers // Frontiers in Oncology. 2020. № 10. A. 566511. doi: 10.3389/fonc.2020.566511
Yin M., Li X., Tan S., Zhou H.J., Ji W., Bellone S., Xu X., Zhang H., Santin A.D., Lou G., Min W. Tumor-associated macrophages drive spheroid formation during early transcoe-lomic metastasis of ovarian cancer // The Journal of Clinical Investigation. 2016. Vol. 126, № 11. PP. 4157-4173. doi: 10.1172/JCI87252
Monfort A., Owen S., Piskorz A.M., Supernat A., Moore L., Al-Khalidi S., Bohm S., Pharoah P., McDermott J., Balkwill F.R., Brenton J.D.Combining measures of immune infiltration shows additive effect on survival prediction in high-grade serous ovarian carcinoma // British Journal of Cancer. 2020. № 122. PP. 1803-1810. doi: 10.1038/s41416-020-0822-x
Zhang M., He Y., Sun X., Li Q., Wang W., Zhao A., Di W. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients // Journal of Ovarian Research. 2014. № 7. A. 19. doi: 10.1186/1757-2215-7-19
Yuan X., Zhang J., Li D., Mao Y., Mo Y., Du W., Ma X. Prognostic significance of tumor-associated macrophages in ovarian cancer: a meta-analysis // Gynecologic Oncology. 2017. Vol. 147. № 1. PP. 181-187. doi: 10.1016/j.ygyno.2017.07.007
Lan C., Huang X., Suxia L., Huang H., Cai Q., Wan T., Lu J., Liu J. Expression of M2-polarized macrophages is associated with poor prognosis for advanced epithelial ovarian cancer // Technology in Cancer Research & Treatment. 2013. Vol. 12, № 3. PP. 259-267. doi: 10.7785/tcrt.2012.500312
Maccio A., Gramignano G., Cherchi M.C., Tanca L., Melis L., Madeddu C. Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients // Scientific Reports. 2020. № 10. A. 6096. doi: 10.1038/s41598-020-63276-1
Page C., Marineau A., Bonza P.K., Rahimi K., Cyr L., Labouba I., Madore J., Delvoye N., Mes-Masson A.-M., Provencher D.M., Cailhier J.-F. BTN3A2 expression in epithelial ovarian cancer is associated with higher tumor infiltrating T cells and a better prognosis // PLoS One. 2012. Vol. 7, № 6. e38541. doi: 10.1371/journal.pone.0038541
Qu Q.-X., Quin H., Shen Y., Zhu Y.-B., Zhang X.-G. The increase of circulating PD-L1-expressing CD68(+) macrophage in ovarian cancer // Tumor Biology. 2016. № 37. PP. 5031-5037. doi: 10.1007/s13277-015-4066-y
He Y.-F., Zhang M.-Y., Wu X., Sun X.-J., Xu T., He Q.-Z., Di W. High MUC2 expression in ovarian cancer is inversely associated with the M1/M2 ratio of tumor-associated macrophages and patient survival time // PLoS One. 2018. Vol. 8, № 12. e79769. doi: 10.1371/journal.pone.0079769
Kryczek I., Zou L., Rodriguez P., Zhu G., Wei S., Mottram P., Brumlik M., Cheng P., Curiel T., Myers L., Lackner A., Alvarez X., Ochoa A., Chen L., Zou W. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma // Journal of Experimental Medicine. 2006. Vol. 203, № 4. PP. 871-881. doi: 10.1084/jem.20050930
Cortes M., Sanchez-Moral L., Barrios O., Fernandez-Acenero M., Martinez-Campanario M.C., Esteve-Codia A., Darling D.S., Gyorffy B., Lawrence T., Dean D.C., Postigo A. Tumor-associated macrophages (TAMs) depend on ZEB1 for their cancer-promoting roles // European Molecular Biology Organization Journal. 2017. № 36. PP. 3336-3355. doi: 10.15252/embj.201797345
Zhang W., Tian J., Hao Q. HMGB1 combining with tumor-associated macrophages enhanced lymphangiogenesis in human epithelial ovarian cancer // Tumour Biology. 2014. № 35. PP. 2175-2186. doi: 10.1007/s13277-013-1288-8
Liu L., Wang X., Li X., Wu X., Tang M., Wang X. Upregulation of IGF1 by tumor-associated macrophages promotes the proliferation and migration of epithelial ovarian cancer cells // Oncology Reports. 2018. Vol. 39, № 2. PP. 818-826. doi: 10.3892/or.2017.6148
Yeung T.-L., Leung C.S., Yip K.-P., Au Yeung C.L., Wong S.T.C., Mok S.C. Cellular and molecular processes in ovarian cancer metastasis. A review in the theme: cell and molecular processes in cancer metastasis // The American Journal of Physiology. 2015. Vol. 309, № 7. PP. 444-C456. doi: 10.1152/ajpcell.00188.2015
Huang L.-L., Xia H.H.-X., Zhu S.-L. Ascitic fluid analysis in the differential diagnosis of ascites: focus on cirrhotic ascites // Journal of Clinical and Translational Hepatology. 2014. Vol. 2, № 1. PP. 58-64. doi: 10.14218/JCTH.2013.00010
Виллерт А. Б., Коломиец Л. А., Юнусова Н. В., Иванова А. А. Асцит как предмет исследований при раке яичников // Сибирский онкологический журнал. 2019. № 18 (1). С. 116-123. doi: 10.21294/1814-4861-2019-18-1-116-123
Rickard B.P., Conrad C., Sorrin A.J., Ruhi M.K., Reader J.C., Huang S.A., Franco W., Scarcelli G., Polacheck W.J., Roque D.M., Carmen M.G., Huang H.-C., Demirci U., Rizvi I. Malignant ascites in ovarian cancer: cellular, acellular, and biophysical determinants of molecular characteristics and therapy response // Cancers (Basel). 2021. Vol. 13, № 17. A. 4318. doi: 10.3390/cancers13174318
Feki A., Berardi P., Bellingan G., Major A., Krause K.-H., Petignat P., Zehra R., Per-vaiz S., Irminger-Finger I. Dissemination of intraperitoneal ovarian cancer: discussion of mechanisms and demonstration of lymphatic spreading in ovarian cancer model // Critical Reviews in Oncology/Hematology. 2009. Vol. 72, № 1. PP. 1-9. doi: 10.1016/j.critrevonc.2008.12.003
Kipps E., Tan D.S.P., Kaye S.B. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research // Nature Reviews Cancer. 2013. № 13. PP. 273-282. doi: 10.1038/nrc3432
Gilmore A.P. Anoikis // Cell Death and Differentiation. 2005. № 12. PP. 1473-1477. doi: 10.1038/sj.cdd.4401723
Steitz A.M., Steffes A., Finkernagel F., Unger A., Sommerfeld L., Jansen J.M., Wagner U., Graumann J., Muller R., Reinartz S. Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C // Cell Death & Disease. 2020. № 11. A. 249. doi: 10.1038/s41419-020-2438-8
Motohara T., Masuda K., Morotti M., Zheng Y., El-Sahhar S., Chong K.Y., Wietek N., Alsaadi A., Karaminejadranjbar M., Hu Z., Artibani M., Gonzalez L.S., Katabuchi H., Saya H., Ahmd A.A. An evolving story of the metastatic voyage of ovarian cancer cells: cellular and molecular orchestration of the adipose-rich metastatic microenvironment // Oncogene. 2019. № 38. PP. 2885-2898. doi: 10.1038/s41388-018-0637-x
Gao Q., Yang Z., Xu S., Li X., Yang X., Jin P., Liu Y., Zhou X., Zhang T., Gong C., Wei X., Liu D., Sun C., Chen G., Hu J., Meng L., Zhou J., Sawada K., Fruscio R., Grunt T.W., Wischhusen J., Varga-Hernandez V.M., Pothuri B., Coleman R. Heterotypic CAF-tumor spheroids promote early peritoneal metastasis of ovarian cancer // Journal of Experimental Medicine. 2019. Vol. 216, № 3. PP. 688-703. doi: 10.1084/jem.20180765
Winter S.J., Miller H.A., Steinbach-Rankins J.M. Multicellular ovarian cancer model for evaluation of nanovector delivery in ascites and metastatic environments // Pharmaceutics. 2021. Vol. 13, № 11. A. 1891. doi: 10.3390/pharmaceutics13111891
Capellero S., Erriquez J., Battistini C., Porporato R., Scotto G., Borella F., Di Renzo M.F., Valabrega G., Olivero M. Ovarian cancer cells in ascites form aggregates that display a hybrid epithelial-mesenchymal phenotype and allows survival and proliferation of metastasizing cells // The International Journal of Molecular Sciences. 2022. Vol. 23, № 2. A. 833. doi: 10.3390/ijms23020833
Kim S., Kim S., Kim J., Kim B., Kim S.I., Kim M., Kwon S., Song Y.S. Evaluating tumor evolution via genomic profiling of individual tumor spheroids in a malignant ascites // Scientific Reports. 2018. Vol. 8. A. 12724. doi: 10.1038/s41598-018-31097-y
Uruski P., Mikula-Pietrasik J., Pakula M., Budkiewicz S., Drzewiecki M., Gaiday A.N., Wierzowiecka M., Naumowicz E., Moszynski R., Tykarski A., Ksiazek K. Malignant ascites promote adhesion of ovarian cancer cells to peritoneal mesothelium and fibroblasts // The International Journal of Molecular Sciences. 2021. Vol. 22, № 8. A. 4222. doi: 0.3390/ijms22084222
Wang J., Liu C., Chang X., Qi Y., Zhu Z., Yang X. Fibrosis of mesothelial cell-induced peritoneal implantation of ovarian cancer cells // Cancer Management and Research. 2018. Vol. 10. PP. 6641-6647. doi: 10.2147/CMAR.S183043
Worzfeld T., Pogge von Strandmann E., Huber M., Adhikary T., Wagner U., Reinartz S., Muller R. The unique molecular and cellular microenvironment of ovarian cancer // Frontiers in Oncology. 2017. № 7. P. 24. doi: 10.3389/fonc.2017.00024
Adhikary T., Wortmann A., Finkernagel F., Lieber S., Nist A., Stiewe T., Wagner U., Muller-Brusselbach S., Reinartz S., Muller R.Interferon signaling in ascites-associated macrophages is linked to a favorable clinical outcome in a subgroup of ovarian carcinoma patients // BMC Genomics. 2017. № 18. A. 243. doi: 10.1186/s12864-017-3630-9
Maccio A., Gramignano G., Cherchi M.C., Tanca L., Melis L., Madeddu C. Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients // Scientific Reports. 2020. № 10. A. 6096. doi: 10.1038/s41598-020-63276-1
Worzfeld T., Finkernagel F., Reinartz S., Konzer A., Adhikary T., Nist A., Stiewe T., Wagner U., Looso M., Graumann J., Muller R. Proteotranscriptomics reveal signaling networks in the ovarian cancer microenvironment // Molecular & Cellular Proteomics. 2018. Vol. 17, № 2. PP. 270-289. doi: 10.1074/mcp.RA117.000400
Izar B., Tirosh I., Stover E.H., Wakiro I., ..., Porter C.B.M., Slyper M., Waldman J., Jerby-Arnon L., Ashenberg O., Brinker T.J., Mills C., Rogava M., Vigneau S., Sorger P.K., Garraway L.A., Konstantinopoulos P.A., Liu J.B., Matulonis U., Johnson B.E., Rozenblatt-Rosen O., Rotem A., Regev A. A single-cell landscape of high-grade serous ovarian cancer // Journal of Natural Medicines. 2020. № 26. PP. 1271-1279. doi: 10.1038/s41591-020-0926-0
Takaishi K., Komohara Y., Tashiro H., Ohtake H., Nakagawa T., Katabuchi H., Takeya M. Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via STAT3 activation // Cancer Science. 2010. Vol. 101, № 10. PP. 2128-2136. doi: 10.1111/j.1349-7006.2010.01652.x
Cavazzoni E., Bugiantella W., Graziosi L., Franceschini M.S., Donini A. Malignant ascites: pathophysiology and treatment // The International Journal of Clinical Oncology. 2013. № 18. PP. 1-9. doi: 10.1007/s10147-012-0396-6
Yin M., Shen J., Yu S., Fei J., Zhu X., Zhao J., Zhai L., Sadhukhan A., Zhou J. Tumor-associated macrophages (TAMs): a critical activator in ovarian cancer metastasis // On-coTargets and Therapy. 2019. Vol. 12. PP. 8687-8699. doi: 10.2147/OTT.S216355
Sigismund S., Avanzato D., Lanzetti L. Emerging functions of the EGFR in cancer // Molecular Oncology. 2018. Vol. 12, № 1. PP. 3-20. doi: 10.1002/1878-0261.12155
Long L., Hu Y., Long T., Lu X., Tuo Y., Li Y., Ke Z. Tumor-associated macrophages induced spheroid formation by CCL18-ZEB1-M-CSF feedback loop to promote transcoe-lomic metastasis of ovarian cancer // The Journal for ImmunoTherapy of Cancer. 2021. Vol. 9, № 12. e003973. doi: 10.1136/jitc-2021-003973
Larionova I., Kazakova E., Gerashchenko T., Kzhyshkowska J. New angiogenic regulators produced by TAMs: perspective for targeting tumor angiogenesis // Cancers (Basel). 2021. Vol. 13, № 13. A. 3253. doi: 10.3390/cancers13133253
Moughon D.L., He H., Schokrpur S., Jiang Z.K., Yaqoob M., David J., Lin C., Iruela-Arispe M.L., Dorigo O., Wu L. Macrophage blockade using CSF1R inhibitors reverses the vascular leakage underlying malignant ascites in late-stage epithelial ovarian cancer // Cancer Research. 2015. Vol. 75, № 22. PP. 4742-4752. doi: 10.1158/0008-5472.CAN-14-3373
Yin M., Zhou H.J., Zhang J., Lin C., Li H., Li X., Li Y., Zhang H., Breckenridge D.G., Ji W., Min W. ASK1-dependent endothelial cell activation is critical in ovarian cancer growth and metastasis // Journal of Clinical Investigation insight. 2017. Vol. 2, № 18. e91828. doi: 10.1172/jci.insight.91828
Duluc D., Delneste Y., Tan F., Moles M.-P., Grimaud L., Lenoir J., Preisser L., Ane-gon I., Catala L., Ifrah N., Descamps P., Gamelin E., Gascan H., Hebbar M., Jeannin P. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells // Blood. 2007. Vol. 110, № 13. PP. 4319-4330. doi: 10.1182/blood-2007-02-072587
Reinartz S., Finkernagel F., Adhikary T., Rohnalter V., Schumann T., Schober Y., Nock-her W.A., Nist A., Stiewe T., Jansen J.M., Wagner U., Muller-Brusselbach S., Muller R. A transcriptome-based global map of signaling pathways in the ovarian cancer microenvironment associated with clinical outcome // Genome Biology and Evolution. 2016. № 17. A. 108. doi: 10.1186/s13059-016-0956-6
Schutyser E., Struyf S., Proost P., Opdenakker G., Laureys G., Verhasselt B., Peperstraete L., Van de Putte I., Saccani A., Allavena P., Mantovani A., Damme J.V. Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma // The Journal of Biological Chemistry. 2002. Vol. 277, № 27. PP. 24584-24593. doi: 10.1074/jbc.M112275200
Korbecki J., Olbromski M., Dzięgiel P. CCL18 in the Progression of Cancer // The International Journal of Molecular Sciences. 2020. Vol. 21, № 21. A. 7955. doi: 10.3390/ijms21217955
Lane D., Matte I., Laplante C., Garde-Granger P., Carignan A., Bessette P., Rancourt C., Piche A. CCL18 from ascites promotes ovarian cancer cell migration through proline-rich tyrosine kinase 2 signaling // Molecular Cancer. 2016. № 15. A. 58. doi: 10.1186/s12943-016-0542-2
Montalban del Barrio I., Penski C., Schlahsa L., Stein R.G., Diessner J., Wockel A., Dietl J., Lutz M.B., Mittelbronn M., Wischhusen J., Hausler S.F.M. Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages - a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape // Journal for ImmunoTherapy of Cancer. 2016. Vol. 4, № 1. A. 49. doi: 10.1186/s40425-016-0154-9