Size and Content of Organic Particles in the Casts of Aporrectodea caliginosa and Lumbricus rubellus (Model Experiment)
Being part of a wide variety of soil invertebrates, earthworms play an important role in soil organic matter (SOM) accumulation, mixing and transformation. The goal of this study is to detect organic and mineral particles in the particle-size distributions (PSD) of the casts of Aporrectodea caliginosa and Lumbricus rubellus. The two hypotheses of this study are as follows: (a) earthworms change PSD by grinding organic matter (OM), and (b) PSD without OM does not vary in all the variants. For the first time ever, the authors studied PSD before and after OM oxidation in casts. For the first time ever, they also described the increase in the content of mineral particles in the casts of A. caliginosa and L. rubellus that was not observed in the control samples. The soil did not contain particles of >100 gm (based on the performed particle-size distribution analysis). The experimental site was located 15 km to the north of V. V. Alekhin Central Black Earth State Biosphere Reserve. In 1947, a black earth plot having an area of 0.6 hectares was ploughed under regularly mowed virgin motley grass-meadow vegetation within the Reserve territory (51°34'12.5"N 36°05'22.5" E). In this study, we used a model experiment based on microcosms with earthworms. We took soil from the arable black earth horizon of Kursk Region (51°37'17.1" N; 36°15'42.0" E). This type of soil was Protocalcic Chernozem (Loamic, Pachic). The microcosms belonged to four variants: soil, soil&litter, soil&litter and worms (A. caliginosa), soil&litter and worms (L. rubellus). All the variants had four replications. We took a total of 24 samples (an average sample from 10 different parts of the microcosm) from each variant based on replications and sampling timing (Figure 2). We measured the total content of C after dry combustion in an oxygen stream at 1,000 °C with the AN-7529 carbon analyzer (Gomel Plant of Measuring Devices, Republic of Belarus) using the method of automatic coulometric titration. For our PSD analysis, we used the laser diffractometer Malvern Mastersizer 3000E with a helium-neon red light at a wavelength of 632.8 nm, and the 600ml Hydro LV dispersing device. The measurement ranges of particle sizes were from 0.01 to 2,000 gm (Malvern Panalytical Inc., GB). We determined PSD in soil samples and casts before and after OM oxidation. The laboratory model experiment variants had four replications. We performed a carbon content analysis in three dimensions for each sample. We obtained PSD results in six replications, each of which being an average value of three sample suspension scans. The figures show arithmetic mean values for the replications and the confidence intervals of a standard deviation at the significance level (a = 0.05) calculated using Excel (2010). We made an analysis of variance (ANOVA) and a principal component analysis (PCA) using additive logarithmic ratio transformation for data normalization. The contribution of the earthworm A. caliginosa to SOM accumulation is insignificant. The TOC in the casts of A. caliginosa is 0.32± 0.06% higher vs. the reference variant “soil.” The TOC in the soil with the epigeic soil-litter earthworm L. rubellus (4.99± 0.4%) and its casts (5.03±0.24%) is significantly higher vs. other experiment variants (Figure 3). Earthworms changed the soil PSD, which led to a redistribution of particles (Table 1). Owing to the intake of organic particles, earthworms increased the share of coarse sand in the sand fraction (vs. the particle fraction (PF) of the control sample - soil without litter and earthworms) for A. caliginosa (very fine sand +1.05%, fine sand +1.07%, medium sand +0.4%, coarse sand +0.22%) and L. rubellus (very fine sand +3.36%, fine sand +4.7%, medium sand +2.24%, coarse sand +1.03%) (Figure 4). The earthworms A. caliginosa concentrate mineral particles of fine sand (+0.46%), medium sand (+0.37%), and coarse sand (+0.07%) in their casts, while L. rubellus concentrate silt particles (+3.8%) and fine sand (+0.36%) (Figure 5). The loss of vol.(%) after oxidation in all fractions in all the variants is caused by soil organic matter (Table 2). We used PCA to assess the effect of earthworm species and litter on the size and content of organic particles in casts and soil (Figure 6). The PCA results show important fractions for detection of organic (>100 pm) and mineral (250-500 pm, 500-1,000 pm) particles in the PSD. We assessed the effect of the size and content of organic particles in casts using ANOVA (Table 3). The most important factors are earthworm species and litter (based on the partial n-square). We assume that the source of mineral particles in the casts of A. caliginosa are phytoliths from the litter of Acer platanoides (L). The earthworms L. rubellus have a stronger effect on soil vs. A. caliginosa. The study does not confirm some of our hypotheses. Earthworms change PSD through OM grinding, but the PSD without OM is different in all the variants. We hypothesize in our paper that the reason is the destruction of phytoliths from litter and their accumulation in casts. One may distinguish between organic and mineral components in samples through determination of PSD before and after organic matter removal. We recommend determining a particle-size distribution both before and after organic matter removal from initial samples. The paper contains 5 Figures, 3 Tables, 54 References. The Authors declare no conflict of interest.
Keywords
particle-size distribution,
elementary soil particles,
soil organic matter,
earthworms,
chernozemAuthors
Frolov Oleg A. | V.V. Dokuchaev Soil Science Institute; Lomonosov Moscow State University | 6.40.7.4@mail.ru |
Milanovskiy Evgeniy Yu. | Institute of Physicochemical and Biological Problems in Soil Science, RAS | milanovskiy@gmail.com |
Всего: 2
References
Ge Y. et al. Phytoliths in selected broad-leaved trees in China // Scientific reports. 2020. Vol. 10, № 1. РР. 1-15. doi: 10.1038/s41598-020-72547-w
Ремезов Н.П., Быкова Л.Н., Смирнова К.М. Потребление и круговорот азота и зольных элементов в лесах европейской части СССР. М. : Изд-во МГУ, 1959.
Ремезов Н.П. Динамика взаимодействия широколиственного леса с почвой // Проблемы почвоведения. М. : Изд-во АН СССР, 1962. С. 101-147.
Воронков М.Г., Зелчан Г.И., Лукевиц Э.Я. Кремний и жизнь: Биохимия, токсикология и фармакология соединений кремния. М. : Знание, 1971.
Eusterhues K., Rumpel C., Kogel-Knabner I. Stabilization of soil organic matter isolated via oxidative degradation // Organic geochemistry. 2005. Vol. 36, № 11. РР. 1567-1575. doi: 10.1016/j. orggeochem.2005.06.010
Айдинян Р.Х. Зольный обмен между древесной растительностью и черноземными почвами Каменной степи // Почвоведение. 1953. № 9. С. 40-61.
ISO 11277:1998 Soil quality - Determination of particle size distribution in mineral soil material - Method by sieving and sedimentation.
ISO 13320:2020 Particle size analysis - Laser diffraction methods.
Pansu M., Gautheyrou J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods. Springer Science & Business Media, 2007.
Ozer M., Orhan M., Isik N.S. Effect of particle optical properties on size distribution of soils obtained by laser diffraction // Environmental & Engineering Geoscience. 2010. Vol. 16, № 2. РР. 163-173. doi: 10.2113/gseegeosci.16.2.163
Schmidt M.W.I., Rumpel C., Kogel-Knabner I. Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils // European Journal of Soil Science. 1999. Vol. 50, № 1. РР. 87-94. doi: 10.1046/j.1365-2389.1999.00211.x
Yudina A.V., Milanovskii Y. The microagregate analysis of soils by the method of laser difraction: the specificities of sample preparation and result interpretation // B. Dokuchaev Soil Inst. 2017. Vol. 89. РР. 3-20. doi: 10.19047/0136-1694-89-3-20
Милановский Е.Ю., Шеин Е.В., Русанов А.М., Тюгай З.Н., Ильин Л.И., Зинченко С.И., Быкова Г.С. Пространственное распределение содержания органического вещества в почвах агроландшафтов Центрального Черноземья // Вестник Оренбургского государственного университета. 2015. № 6 (181). С. 127-130.
Satchell J.E. Selection of leaf litter by Lumbricus terrestris // Progress in soil biology. 1967. РР. 102-119.
Bornebusch C.H. Laboratory experiments on the biology of worms // Dansk. Skorforen. Tidssk. 1953. Vol. 38. РР. 557-559.
Всеволодова-Перель Т.С. Дождевые черви фауны России. М. : Наука, 1997. 102 с.
Bouche M.B. Strategies lombriciennes // Soil Organisms as Components of Ecosystems : 6th Int. Soil Zool. Coli., Ecol. Bull. / eds. by V. Lohm, T. Persson. Stockholm, 1977. РР. 122-132.
Fomin D.S. et al. Dry sieving analysis of soil by vibratory sieve shaker: modification and optimization // Bulletin of VV Dokuchaev Soil Science Institute. 2019. № 96. РР. 149177. doi: 10.19047/0136-1694-2019-96-149-177
Satchell J.E., Worms R., Worms K. A basis for classifying lumbricid earthworm strategies // Soil Biology as Related to Land Use Practices: Proceedings of the VII International Soil Zoology Colloquium. EPA, 1980. РР. 848-863.
Афанасьева Е.А. Черноземы Среднерусской возвышенности. М. : Наука, 1966. 222 с.
Kholodov V., Farkhodov Y.R., Yaroslavtseva N., Aydiev A.Y., Lazarev V., Ilyin B., Ivanov A., Kulikova N. Thermolabile and thermostable organic matter of chernozems under different land uses // Eurasian Soil Science. 2020. Vol. 53, № 8. РР. 1066-1078. doi: 10.1134/S1064229320080086
Shein E., Lazarev V., Aidiev A.Y., Sakunkonchak T., Kuznetsov M.Y., Milanovskii E.Y., Khaidapova D. Changes in the physical properties of typical chernozems of Kursk oblast under the conditions of a long-term stationary experiment // Eurasian Soil Science. 2011. Vol. 44, № 10. РР. 1097-1103. doi: 10.1134/S1064229311100127
Kholodov V., Yaroslavtseva N., Farkhodov Y.R., Belobrov V., Yudin S., Aydiev A.Y., Lazarev V., Frid A. Changes in the ratio of aggregate fractions in humus horizons of chernozems in response to the type of their use // Eurasian Soil Science. 2019. Vol. 52, № 2. РР. 162-170. doi: 10.1134/S1064229319020066
Frolov O., Yakushev A., Milanovskiy E.Y. The heterogeneity of the properties of the coprolites Aporrectodea caliginosa and Lumbricus rubellus in model experiment with chernozem soil //Bulletin of VV Dokuchaev Soil Science Institute. 2019. № 99. РР. 92116. doi: 10.19047/0136-1694-2019-99-92-116
Georgiadis A., Marhan S., Lattacher A., Mader P., Rennert T. Do earthworms affect the fractionation of silicon in soil? // Pedobiologia. 2019. Vol. 75. РР. 1-7. doi: 10.1016/j.pedobi.2019.05.001
Karthikeyan M., Gajalakshmi S., Abbasi S. A. Ingestion of sand and soil by phytophagous earthworm Eudrilus eugeniae: a finding of relevance to earthworm ecology as well as vermitechnology // Archives of Agronomy and Soil Science. 2014. Vol. 60, № 12. РР. 1795-1805. doi: 10.1080/03650340.2014.912034
Schulmann O.P., Tiunov A.V., Tiunov A.V. Leaf litter fragmentation by the earthworm Lumbricus terrestris L. // Pedobiologia. 1999. Vol. 43, № 5. РР. 453-458.
Marhan S., Scheu S. Effects of sand and litter availability on organic matter decomposition in soil and in casts of Lumbricus terrestris L. // Geoderma. 2005. Vol. 128, № 1-2. РР. 155-166. doi: 10.1016/j.geoderma.2004.07.001
Shein E.V. The particle-size distribution in soils: problems of the methods of study, interpretation of the results, and classification // Eurasian soil science. 2009. Vol. 42, № 3. РР. 284-291. doi: 10.1134/S1064229309030053
Yudina A., Fomin D., Kotelnikova A., Milanovskii E.Y. From the notion of elementary soil particle to the particle-size and microaggregate-size distribution analyses: A review // Eurasian soil science. 2018. Vol. 51, № 11. РР. 1326-1347. doi: 10.1134/ S1064229318110091
Лукина Н.В., Тихонова Е.В., Шевченко Н.Е., Горнов А.В., Кузнецова А.И., Гераськина А.П., Смирнов В.Э., Горнова М.В., Ручинская Е.В., Анищенко Л.Н., Тебенькова Д.Н., Данилова М.А., Бахмет О.Н., Крышень А.М., Князева С.В., Шашков М.П., Быховец С.С., Чертов О.Г., Шанин В.Н. Аккумуляция углерода в лесных почвах и сукцессионный статус лесов. М., 2018. С. 86-98.
Boselli R., Fiorini A., Santelli S., Ardenti F., Capra F., Maris S.C., Tabaglio, V. Cover crops during transition to no-till maintain yield and enhance soil fertility in intensive agro-
Звягинцев Д.Г., Бабьева И.П., Зенова Г.М. Биология почв : учебник. М. : Московский государственный университет им. М.В. Ломоносова, 2005. 445 с.
Hedenec P., Cajthaml T., Pizl V., Marialigeti K., Toth E., Borsodi A.K., Chronakova A., Kristhfek V., Frouz J. Long-term effects of earthworms (Lumbricus rubellus Hoffmeister, 1843) on activity and composition of soil microbial community under laboratory conditions //Applied Soil Ecology. 2020. Vol. 150. Р. 103463. doi: 10.1016/j.apsoil. 2019.103463
Bedano J.C., Vaquero F., Dominguez A., Rodriguez M.P., Wall L., Lavelle P. Earthworms contribute to ecosystem process in no-till systems with high crop rotation intensity in Argentina // Acta Oecologica. 2019. Vol. 98. РР. 14-24. doi: 10.1016/j.actao. 2019.05.003
Neugschwandtner R.W., Szakova J., Pachtrog V., Tlustos P., Cerny J., Kulhanek M., Kaul H.-P., Euteneuer P., Moitzi G., Wagentristl H. Basic soil chemical properties after 15 years in a long-term tillage and crop rotation experiment // International Agrophysics. 2020. Vol. 34, № 1. doi:10.31545/intagr/114880
Kqsik T., Blazewicz-Wozniak M., Wach D. Influence of conservation tillage in onion production on the soil organic matter content and soil aggregate formation // International Agrophysics. 2010. Vol. 24, № 3. РР. 267-273.
Blouin M., Hodson M.E., Delgado E.A., Baker G., Brussaard L., Butt K.R., Dai J., Dendooven L., Peres G., Tondoh J. A review of earthworm impact on soil function and ecosystem services // European Journal of Soil Science. 2013. Vol. 64, № 2. РР. 161-182. doi: 10.1111/ejss. 12025
Nuutinen V., Butt K.R. Earthworm dispersal of plant litter across the surface of agricultural soils // Ecology. 2019. Vol. 100, № 7. РР. 1-3.
Schon N., Mackay A., Gray R., Van Koten C., Dodd M. Influence of earthworm abundance and diversity on soil structure and the implications for soil services throughout the season // Pedobiologia. 2017. Vol. 62. РР. 41-47. doi: 10.1016/j.pedobi.2017.05.001
Singh S., Singh J., Vig A.P. Earthworm as ecological engineers to change the physicochemical properties of soil: soil vs vermicast // Ecological Engineering. 2016. Vol. 90. РР. 1-5. doi: 10.1016/j.ecoleng.2016.01.072
Lipiec J., Turski M., Hajnos M., Swieboda R. Pore structure, stability and water repellency of earthworm casts and natural aggregates in loess soil // Geoderma. 2015. Vol. 243. РР. 124-129. doi: 10.1016/j.geoderma.2014.12.026
Ferlian O., Thakur M.P., Castaneda Gonzalez A., San Emeterio L.M., Marr S., da Silva Rocha B., Eisenhauer N. Soil chemistry turned upside down: A meta-analysis of invasive earthworm effects on soil chemical properties // Ecology. 2020. Vol. 101, № 3. РР. e02936. doi:10.1002/ecy.2936
Schomburg A., Verrecchia E.P., Guenat C., Brunner P., Sebag D., Le Bayon R.C. Rock-Eval pyrolysis discriminates soil macro-aggregates formed by plants and earthworms // Soil Biology and Biochemistry. 2018. Vol. 117. РР. 117-124. doi: 10.1016/j. soilbio. 2017.11.010
Piron D., Boizard H., Heddadj D., Peres G., Hallaire V., Cluzeau D. Indicators of earthworm bioturbation to improve visual assessment of soil structure // Soil and Tillage Research. 2017. Vol. 173. РР. 53-63. doi: 10.1016/j.still.2016.10.013
Bossuyt H., Six J., Hendrix P.F. Protection of soil carbon by microaggregates within earthworm casts // Soil Biology and Biochemistry. 2005. Vol. 37, № 2. РР. 251-258. doi: 10.1016/j.soilbio.2004.07.035
Fahey T.J., Yavitt J.B., Sherman R.E., Maerz J.C., Groffman P.M., Fisk M.C., Bohlen P.J. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest // Ecological Applications. 2013. Vol. 23, № 5. РР. 1185-1201. doi: 10.1890/12-1760.1
Angst S., Mueller C.W., Cajthaml T., Angst G., Lhotakova Z., Bartuska M., Spaldonova A., Frouz J. Stabilization of soil organic matter by earthworms is connected with physical protection rather than with chemical changes of organic matter // Geoderma. 2017. Vol. 289. РР. 29-35. doi: 10.1016/j.geoderma.2016.11.017
Alvarez C.R., Jimenez-Moreno M., Bernardo F.G., Martin-Doimeadios R.R., Nevado J.B. Using species-specific enriched stable isotopes to study the effect of fresh mercury inputs in soil-earthworm systems // Ecotoxicology and Environmental Safety. 2018. Vol. 147. РР. 192-199. doi: 10.1016/j.ecoenv.2017.08.015
Angst G., Mueller C.W., Prater I., Angst S., Frouz J., Jilkova V., Peterse F., Nierop K.G. Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass // Communications biology. 2019. Vol. 2, № 1. PP. 1-7. doi: 10.1038/s42003-019-0684-z
Стриганова Б.Р. Питание почвенных сапрофагов. М. : Наука, 1980. 244 с.
Medina-Sauza R.M., Alvarez-Jimenez M., Delhal A., Reverchon F., Blouin M., Guerrero-Analco J.A., Barois I. Earthworms building up soil microbiota, a review // Frontiers in Environmental Science. 2019. Vol. 7. Р. 81. doi: 10.3389/fenvs.2019.00081
Garcia-Franco N., Walter R., Wiesmeier M., Hurtarte L.C.C., Berauer B.J., Buness V., Zistl-Schlingmann M., Kiese R., Dannenmann M., Kogel-Knabner I. Biotic and abiotic controls on carbon storage in aggregates in calcareous alpine and prealpine grassland soils // Biology and Fertility of Soils. 2021. Vol. 57, № 2. PP. 203-218. doi: 10.1007/s00374-020-01518-0
Capowiez Y., Gilbert F., Vallat A., Poggiale J.-C., Bonzom J.-M. Depth distribution of soil organic matter and burrowing activity of earthworms-mesocosm study using X-ray tomography and luminophores // Biology and Fertility of Soils. 2021. Vol. 57, № 3. PP. 337-346. doi: 10.1007/s00374-020-01536-y