Diversity of Psychrophilic Colonies and Their Biotechnological Potential | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2022. № 58. DOI: 10.17223/19988591/58/2

Diversity of Psychrophilic Colonies and Their Biotechnological Potential

Psychrophilic bacteria are a large group of microorganisms that prevail in low-temperature ecosystems. Psychrophilic bacteria have undergone a number of adaptations that help them exist in such conditions. One of such adaptations is the use of enzymes with a high specific activity at low temperatures. Such enzymes are usually called “cold-active.” These enzymes have potential applications in biotechnology and industry. In our review, we considered individual genera of psychrophilic bacteria, current global trends in the study of cold-active enzymes, their applications, and place in industrial biotechnology. Thus, the main goal of this study was to explore the diversity of psychrophilic bacteria, as well as opportunities of their application in biotechnology. The natural ecological sites of psychrophiles are numerous and varied. Psychrophiles form a permanent microflora of eternal cold regions, polar regions and oceans. Bacteria belonging to this group are found in soil, water or associated with plants and animals. An important site for psychrophilic microorganisms is a low-temperature water reservoir. At present, many new genera of psychrophiles and psychrotrophs have been derived from the bottom sediments and sea waters of the Arctic and Antarctic and described. Psychrophilic microorganisms are found in caves and in ancient ice crystal structures. The latter testifies to the very possibility of the super-long anabiosis phenomenon, as well as vital capacity preservation without division for a long period of time. Psychrophiles do not have a single form, they belong to at least several phylogenetic groups. Psychrophilic forms are found among the representatives of a large number of genera. There are no common physiological and biochemical parameters typical of psychrophilic bacteria. They comprise rods, cocci, vibrios, gram-negative and gram-positive bacteria, bacteria that produce and do not produce spores, strict aerobes, facultative and strict anaerobes. We lay greater emphasis on the diversity of psychrophilic bacteria capable of producing industrially important enzymes. The review considers bacteria belonging to the genera Vibrio and Aliivibrio, Pseudomonas, Achromobacter, Arthrobacter, Pseudoalteromonas, Bacillus, Clostridium, Micrococcus, Psychrobacter, Psychromonas, Flavobacterium, and psychrophilic methanotrophic microorganisms. These bacteria enzymes are used in agriculture, biotechnology, pharmaceuticals and household chemicals, as well as other sectors of the national economy. Psychrophilic bacteria produce a chemical compound that can be used in medicine. For example, Pseudomonas antarctica contains a cluster of genes encoding microcin B, R-type pyocins, adenosylcobalamin, and pyrroloquinoline quinone. Thus, P. antarctica has antibiotic activity. Psychrobacter proteolyticus also has an antineoplastic action and secrets an extracellular cold-adapted metalloproteinase being able to inhibit the space-occupying process. Cold-active metalloproteinases are also widely used as detergents, in currying, food sector and molecular biology. The immunogenic Pal conformable protein was derived from the psychrophilic strain of The representatives of the genus Arthrobacter capable of metabolizing diuron and petroleum products have an important property. A. agilis produces a red pigment, a bacterioruberin-type carotenoid being interesting as an antioxidant. A. psychrochitiniphilus is promising for cleaning water areas, oil-polluted coastlines, as it decomposes oil and petroleum products. Flavobacterium limicola is a potential source of cold-active protease. This bacterium is characterized by an increase in protease secretion as temperature decreases. Thus, F. limicola can be used in environmental biotransformations and bioremediations. The psychrophilic bacteria of the genus Bacillus are the participants of active studies. Their cold-active enzymes have a high potential in various areas of biomedicine, immunology, decontamination, and various industrial applications. The antifreeze proteins of psychrophilic Clostridia are considered a promising biotechnological product for use in medicine, food, beauty products, fuel, and other industries. This study reviews literary sources and indicates that at present obligate and facultative psychrophiles (psychrotrophs) and their cold-active enzymes are of scientific interest throughout the world. A significant part of the research is focused on a general understanding of the distribution of psychrophilic bacteria and a local study of enzymatic activity. A further study of psychrophilic microorganisms producing enzymes at low temperatures will reveal new ways for the development of biotechnologies in various sectors of the national economy. The paper contains 94 References. The Authors declare no conflict of interest.

Download file
Counter downloads: 62

Keywords

environmental conditions, diversity, cold-active enzymes, psychrophilic bacteria

Authors

NameOrganizationE-mail
Sidorenko Marina L.Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RASsidorenko@biosoil.ru
Rusakova Daria A.Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS; Far Eastern Federal Universitydashka93.1993@mail.ru
Всего: 2

References

Schouten S., Bowman J.P., Rijpstra W.I., Sinninghe Damste J.S. Sterols in a psychrophilic methanotroph, Methylosphaera hansonii // FEMS Microbiology Letters. 2000. Vol. 186, № 2. PP. 193-195. doi: 10.1111/j.1574-6968.2000.tb09103.x
Oshkin I.Y., Miroshnikov K.K., Belova S.E. Draft genome sequence of Methylovulum psychrotolerans Sph1<sup>T</sup> an obligate methanotroph from low-temperature environments // Microbiology Resource Announcements. 2018. Vol. 6, № 11. РР. e01488-17. doi: 10.1128/genomeA.01488-17
Турова Т.П., Омельченко М.В., Фегединг К.В., Васильева Л.В. Филогенетическое положение психрофильного метанотрофа Methylobacter psychrophilus sp. nov. // Микробиология. 1999. Т. 68, № 4. С. 568-570.
Омельченко М.В., Васильева Л.В., Заварзин Г.А., Савельева Н.Д., Лысенко A.M., Митюшина Л. Л. Новый психрофильный метанотроф рода Methylobacter // Микробиология. 1996. Т. 65, № 3. С. 384-389. doi: 10.1099 /00221287-143-4-1451
Бакунина М.С., Пономарева А. Л., Дубовчук С.С., Еськова А.И., Шакиров P.B., Обжиров А.И. Особенности психрофильных и термофильных метанотрофных микроорганизмов // Вестник ДВО PAH. 2020. № 5. С. 43-50. doi: 10.37102/ 08697698.2020.213.5.004
Каллистова А.Ю., Меркельa А.Ю., Тарновецкий И.Ю., Пименовa Н.В. Образование и окисление метана прокариотами // Микробиология. 2017. Т. 6, № 86. С. 661-683. doi: 10.7868/S002636561706009X
Li S., Hao J., Sun M. Cloning and characterization of a new cold-adapted and thermotolerant i-carrageenase from marine bacterium Flavobacterium sp. YS-80-122 // International journal of biological macromolecules. 2017. № 102. PP. 1059-1065. doi: 10.1016/j.ijbiomac.2017.04.070
Chaudhary D.K., Kim D.U., Kim D., Kim J. Flavobacterium petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil // Scientific Reports. 2019. Vol. 9, № 1. P. 4134. doi: 10.1038/s41598-019-40667-7
Kim J.H., Choi B.H., Jo M., Kim S.C., Lee P.C. Flavobacterium faecale sp. nov., an agarase-producing species isolated from stools of Antarctic penguins // International Journal of Systematic and Evolutionary Microbiology. 2014. Vol. 64, № 8. PP. 2884-2890. doi: 10.1099/ijs.0.059618-0
Chattopadhyay M.K., Reddy G.S., Shivaji S. Psychrophilic bacteria: Biodiversity, molecular basis of cold adaptation and biotechnological implications // Current Biotechnology. 2014. Vol. 1, № 3. PP. 100-116. doi: 10.2174/22115501113026660039
Tamaki H., Hanada S., Kamagata Y., Nakamura K., Nomura N., Nakano K., Matsumura M. Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments // Systematic and Evolutionary Microbiology. 2003. Vol. 53, № 2. PP. 519-526. doi: 10.1099/ijs.0.02369-0
Хайруллин Р.Ф., Киямова Р.Г., Ризванов А.А. Экспрессия рекомбинантных белков в E. coli : учеб. пособие. Казань : Изд-во Казан. ун-а, 2018. 142 с.
Jung Y.H., Protein J. Overexpression of cold shock protein a of Psychromonas arctica KOPRI 22215 confers cold-resistance // The Protein Journal. 2010. Vol. 29, № 2. PP. 136-42. doi: 10.1007/s10930-010-9233-9
Maciejewska N., Walkusz R., Olszewski M., Szymanska A. New nuclease from extreme ly psychrophilic microorganism Psychromonas ingrahamii 37: Identification and characterization // Molecular Biotechnology. 2019 Vol. 61, № 2. PP. 122-133. doi: 10.1007/s12033-018-0142-z
Breezee J., Cady N., Staley J.T. Subfreezing growth of the sea ice bacterium Psychromonas ingrahamii // Microbial Ecology. 2004. Vol. 47, № 3. РР. 300-304. doi: 10.1007/s00248-003-1040-9
Auman A.J., Breezee J.L., Gosink J.J., Kmpfer P., Staley J.T. Psychromonas ingrahamii sp. nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice // Evolutionary Microbiology. 2006. Vol. 56, № 5. РР. 1001-1007. doi: 10.1099/ijs.0.64068-0
Makled S.O, Hamdan A.M, El-Sayed A.M, Hafez E.E. Evaluation of marine psychrophile, Psychrobacter namhaensis SO89, as a probiotic in Nile tilapia (Oreochromis niloticus) diets // Fish Shellfish Immunology. 2017. № 61. PP. 194-200. doi: 10.1016/j.fsi.2017.01.001
Abdel-Hamid N.M., Abass S.A. Matrix metalloproteinase contribution in management of cancer proliferation, metastasis and drug targeting // Molecular Biology Reports. 2021. Vol. 48, № 9. РР. 6525-6538. doi: 10.1007/s11033-021-06635-z
Лайнен Г.Р. Матриксные металлопротеиназы и фибринолитическая активность клеток // Биохимия. 2002. Т. 67, № 1. С. 107-115.
Denner E.B., Mark B., Busse H.J., Turkiewicz M., Lubitz W. Psychrobacterproteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the antarctic krill Euphausia superba Dana, excreting a cold-adapted metalloprotease // Systematic and Applied Microbiology. 2001. Vol. 24, № 1. PP. 44-53. doi: 10.1078/0723-2020-00006
Yumoto I., Hirota K., Sogabe Y., Nodasaka Y., Yokota Y., Hoshino T. Psychrobacter okhotskensis sp. nov., a lipaseproducing facultative psychrophile isolated from the coast of the Okhotsk Sea // International Journal of Systematic and Evolutionary Microbiology. 2003. Vol. 53, № 6. РР. 1985-1989. doi: 10.1099/ijs.0.02686-0
Juni E., Heym A. Psychrobacter immobilis gen. nov., sp. Nov.: Genospecies composed of gram-negative, aerobic, oxidase-positive coccobacilli // Microbiological Societies. 1986. Vol. 3, № 36. РР. 388-391. doi: org/10.1099/0020 7713-36-3-388
Fan H.X., Liu Y., Liu Z.P. Optimization of fermentation conditions for cold-adapted amylase production by Micrococcus antarcticus and its enzymatic properties // Chinese Journal of Environmental Science. 2009. № 8. РР. 2473-2478.
Liu H., Xu Y., Ma Y., Zhou P. Characterization of Micrococcus antarcticus sp. nov., a psychrophilic bacterium from Antarctica // International Journal of Systematic and Evolutionary Microbiology. 2000. Vol. 50, № 2. РР. 715-719. doi: 10.1099/00207713-50-2-715
Печерицына С.А., Архипова О.В., Сузина Н.Е., Лысанская В.Я., Лауринавичюс К. С., Щербакова В. А. Внутриклеточный полисахарид анаэробного психрофила Clostridium algoriphilum // Микробиология. 2011. Т. 1, № 80. С. 40-46. doi: 10.1134/S0026261710061050
Murakami T., Mori H., Shcherbakova V.A., Yoshimura Y., Segawa T. Draft genome sequence of Clostridium tagluense strain A121T, isolated from a permafrost core in the canadian high Arctic. Microbiology Resource Announcements. 2019. Vol. 8, № 5. РР. e01630-18. doi: 10.1128/MRA.01630-18
Shcherbakova V., Troshina O. Biotechnological perspectives of microorganisms isolated from the Polar Regions // Microbiology Australia. 2018. Vol. 39, № 3. РР. 137-140. doi: 10.1071/MA18042
Riley M., Staley J.T., Danchin A., Wang T.Z., Brettin T.S., Hauser L.J., Land M.L., Thompson L.S. Genomics of an extreme psychrophile Psychromonas ingrahamii // BMC Genomics. 2008. Vol. 9, № 210. Р. 19. doi: 10.1186/1471-2164-9-210
Spring S., Merkhoffer B., Weiss N., Kroppenstedt R.M., Hippe H., Stackebrandt E. Characterization of novel psychrophilic clostridia from an Antarctic microbial mat: .... // International Journal of Systematic and Evolutionary Microbiology. 2003. Vol. 53, № 4. PP. 1019-1029. doi: 10.1099/ijs.0.02554-0.
Wambui J., Stevens M.J.A., Sieber S., Cernela N., Perreten V., Stephan R. Targeted genome mining reveals the psychrophilic Clostridium estertheticum complex as a potential source for novel bacteriocins, including cesin A and estercticin A // Frontiers in Microbiology. 2022. Vol. 12, № 801467. Р. eCollection 2021. doi: 10.3389/fmicb. 2021.801467
Broda D.M., Delacy K.M., Bell R.G., Braggins T.J., Cook R.L. Psychrotrophic Clostridium spp. associated with «blown pack» spoilage of chilled vacuum-packed red meats and dog rolls in gas-impermeable plastic casings // International Journal of Food Microbiology. 1996. Vol. 29, № 2-3. РР. 335-352. doi: 10.1016/0168-1605(95)00 070-4.
Wambui J., Stephan R. Relevant aspects of Clostridium estertheticum as a specific spoilage organism of vacuum-packed meat // Microorganisms. 2019. Vol. 7, № 5. Р. 142. doi: 10.3390/microorganisms7050142
Dobrovol’skaya T.G., Zvyagintsev D.G., Chernov I.Yu., Golovchenko A.V., Zenova G.M., Lysak L.V., Manucharova N.A., Marfenina O.E., Polyanskaya L.M., Stepanov A.L., Umarov M.M. The role of microorganisms in the ecological functions of soils // Eurasian Soil Science. 2015. Vol. 48, №. 9, PP. 959-967. doi: 10.1134/ S1064229315090033
Колыванова С.С., Каленова Л.Ф. Влияние метаболитов микроорганизмов многолетнемерзлых пород на синтез цитокинов мононуклеарными клетками периферической крови человека in vitro // Медицинская иммунология. 2021. Т. 23, № 1. С. 137-142. doi: org/10.15789/1563-0625-IOM-2014
Das K.R., Tiwari A.K., Kerkar S. Psychrotolerant Antarctic bacteria biosynthesize gold nanoparticles active against sulphate reducing bacteria // Preparative Biochemistry & Biotechnology. 2020. Vol. 50, № 5. РР. 438-444. doi: 10.1080/10826068.2019.1706559.
Радциг М. А., Кокшарова О. А., Надточенко В. А., Хмель И. А. Получение наночастиц золота методом биогенеза с использованием бактерий // Микробиология. 2016. Т. 85, № 1. С. 42-49. doi: 10.7868/S002636 5616010092
Okubo Y., Yokoigawa K., Esaki N., Soda K., Misono H. High catalytic activity of alanine racemase from psychrophilic Bacillus psychrosaccharolyticus at high temperatures in the presence of pyridoxal 5'-phosphate / FEMS Microbiology Letters. 2000. Vol. 192, № 2. PP. 169-173. doi: org/10.1111/j.1574-6968.2000.tb09377.x
Larkin J.M., Stokes J.L. Isolation of psychrophilic species of Bacillus // Journal of bacteriology. 1966. Vol. 91, №. 5. РР. 1667-1671. doi: 10.1128/jb.91.5.1667-1671.1966
Struvay C., Feller G. Optimization to low temperature activity in psychrophilic enzymes // International Journal of Molecular Sciences. 2012. Vol. 13, № 9. РР. 11643-11665.
Зернов Ю.П., Дедков В.С., Антонова Ю.А., Михненкова Н.А., Дегтярев С.Х. Термолабильная щелочная фосфатаза из психрофильного микроорганизма Alteromonas undina P2 // Биотехнология. 2005. № 2. С. 38-43. doi: 10.3390/ijms 130911643
Kumar S., Khare S.K. Chloride activated halophilic a-amylase from Marinobacter sp. EMB8: Production optimization and nanoimmobilization for efficient starch hydrolysis // Enzyme Research. 2015. Vol. 2015. Р. 9. doi: org/10.1155/2015/859485
Gauthier G., Gauthier M., Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations // International Journal of Systematic Bacteriology. 1995. Vol. 45, № 4. РР. 755-761. doi: 10.1099/00207713-45-4-755
Beurmann S., Ushijima B., Svoboda C.M., Videau P., Smith A.M., Donachie S.P., Aeby G.S., Callahan S.M. Pseudoalteromonaspiratica sp. nov., a budding, prosthecate bacterium from diseased Montipora capitata, and emended description of the genus Pseudoalteromonas // International Journal of Systematic and Evolutionary Microbiology. 2017. Vol. 67, № 8. РР. 268-2688. doi: 10.1099/ijsem.0.001995
Lamrani M.D., Pesce S., Rouard N., Laurent F.M. Evidence for cooperative mineralization of diuron by Arthrobacter sp. BS2 and Achromobacter sp. SP1 isolated from a mixed culture enriched from diuron exposed environments // Chemosphere. 2014. № 117. РР. 208-215. doi: org/10.1016/j.chemosphere.2014.06.080
Воробейков Г.А., Павлова Т.К., Кондрат С.В., Лебедев В.Н., Юргина В.С., Муратова Р.Р., Макаров П.Н., Дубенская Г.И., Хмелевская И.А. Исследование эффективности штаммов ассоциативных ризобактерий в посевах различных видов растений // Известия Российского государственного педагогического университета им. А.И. Герцена. 2011. № 141. С. 114-123.
Шестаков А.И., Сережкин И.Н., Ламова Я.А., Гавирова Л.А., Шестакова О.О., Ершова О. А., Шабалин Н.В., Исаченко А.И.; ООО «Арктический научно-проектный центр шельфовых разработок». штамм Arthrobacter psychrochitiniphilus ARC 42 ВКПМ АС-2076 - деструктор нефти и нефтепродуктов. Патент: Ru 2699990 C. № заявки 2018140400; Заявл. 15.11.2018; Опубл.11.09.2019. Бюл. № 26.
Ronnekleiv M., Lenes M., Norgard S., Liaaen-Jensen S., Three dodecaene C50-carotenoids from halophilic bacteria // Phytochemistry. 1995. Vol. 39, № 3. РР. 631-634. doi: 003194229500975D
Kelly M., Norgard S., Liaaen-Jensen S. Bacterial carotenoids XXXI C50 carotenoids of Halobacterium salinarium, especially bacterioruberin // Acta Chemica Scandinavica. 1970. № 24. РР. 2169-2182. doi: 10.3891/acta.chem.scand.24-2169.
Khasaeva F., Vasilyuk N., Terentyev P., Troshina M., Lebedev A.T. A novel soil bacterial strain degrading pyridines // Environmental Chemistry Letters. 2011. № 9. PP. 439-445. doi: 10.1007/s10311-010-0299-6
Flegler A., Lipski A. The C50 carotenoid bacterioruberin regulates membrane fluidity in pink-pigmented Arthrobacter species // Archives of Microbiology. 2022. Vol. 204, № 1. Р. 70. doi: 10.1007/s00203-021-02719-3
O'Loughlin E.J., Sims G.K., Traina S.J. Biodegradation of 2-methyl, 2-ethyl, and 2-hydroxypyridine by an Arthrobacter sp. isolated from subsurface sediment // Biodegradation. 1999. Vol. 10, № 2. PP. 93-104. doi: 10.1023/a:1008309026751
Sviridov A.V., Shushkova T.V., Zelenkova N.F., Vinokurova N.G., Morgunov I.G., Ermakova I.T., Leontievsky A.A. Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. // Applied Microbiology and Biotechnology. 2012. № 93. PP. 787-796. doi: 10.1007/s00253-011-3485-y
Ермакова И.Т., Шушкова Т.В., Леонтьевский А.А. Микробная деструкция органо-фосфонатов почвенными бактериями // Микробиология. 2008. Т. 77, № 5. С. 689695. doi: 10.1134/S0026261708050160
Luo Y., Zheng Y., Jiang Zh., Ma Y., Wei D. A novel psychrophilic lipase from Pseudomonas fluorescens with unique property in chiral resolution and biodiesel production via transesterification // Applied Microbiology and Biotechnology. 2006. Vol. 73, № 2. PP. 349-355. doi: 10.1007/s00253-006-0478-3
Kumar S., Suyal D.C., Yadav A., Shouche Y., Goel R. Psychrophilic Pseudomonas helmanticensis proteome under simulated cold stress // Cell Stress Chaperones. 2020. Vol. 25, № 6. PP. 1025-1032. doi: 10.1007/s12192-020-01139-4
Mhetras N., Mapare V., Gokhale D. Cold Active Lipases: Biocatalytic Tools for Greener Technology // Applied Biochemistry and Biotechnology. 2021. Vol. 197, № 7. PP. 22452266. doi: 10.1007/s12010-021-03516-w
Lee J., Cho Y.J., Yang J., Jung Y.J., Hong S.G., Kim O.S.Complete genome sequence of Pseudomonas antarctica PAMC 27494, a bacteriocin-producing psychrophile isolated from Antarctica // Journal of Biotechnology. 2017. № 259. PP.15-18.
Хрульнова С.А., Манухов И.В., Завильгельский Г.Б. Quorum sensing регуляция экспрессии LuK-генов и структура LuK-оперона у морских бактерий A. iivibrio // Генетика. 2011. Т. 12, № 47. С. 1596-1603. doi: 10.1134/S1022795411120052
Цветкова Ю.Д. Особенности культивирования светящихся бактерий как перспективных продуцентов хитиназы для борьбы с патогенами растений // Актуальные проблемы гуманитарных и естественных наук. 2014. № 6-1. С. 113-116.
Skanes A.C., Minniti G., Loose J.S., Mekasha S., Bissaro B., Mathiesen G., Arntzen M., Vaaje-Kolstad G. The fish pathogen Aliivibrio salmonicida LFI1238 can degrade and metabolize chitin despite gene disruption in the chitinolytic pathway // Applied and Environmental Microbiology. 2021. Vol. 87, № 19. P. 56. doi: 10.1128/AEM.00529-21
Karlsen C., Espelid S., Willassen N.P., Paulsen S.M. Identification and cloning of immunogenic Aliivibrio salmonicida Pallike protein present in profiled outer membrane and secreted subproteome // Diseases of aquatic organisms. 2011. Vol. 93, № 3. PP. 215-223. doi: 10.3354/dao02302.
Urbanczyk H., Ast J.C., Higgins M.J., Carson J., Dunlap P.V. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Allivibrio logei comb. nov., Allivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. // International Journal of Systematic and Evolutionary Microbiology. 2007. № 57. PP. 2823-2829. doi: 10.1099/ijs.0.65081-0
Yumoto I., Iwata H., Sawabe T., Ueno K., Ichise N., Matsuyama H., Okuyama H., Kawasaki K. Characterization of a facultatively psychrophilic bacterium, Vibrio rumoiensis sp. nov., that exhibits high catalase activity // Applied and Environmental Microbiology. 1999. Vol. 65, № 1. PP. 67-72. doi: 10.1128/AEM.65.1.67-72.1999
Определитель бактерий Берджи : в 2 т. Т. 1: пер. с англ. / под ред. Дж. Хоулта, Н. Крита, П. Снита, Дж. Стейли, С. Уилльямса. М.: Мир, 1997. 761 с.
Мямин В.Е., Сидоренко А.В., Валентович Л.Н., Гигиняк Ю.Г., Новик Г.И., Коломиец Э.И. Характеристика микроорганизмов, выделенных из «зеленого снега» прибрежной зоны Восточной Антарктиды // Микробные биотехнологии: фундаментальные и прикладные аспекты : сб. науч. тр. Минск : Беларуская наука, 2016. С. 106-125.
Olsen R.H., Metcalf S.E., Todd J.K. Characteristics of bacteriophages attacking psychrophilic and mesophilic Pseudomonads // Journal of Virology. 1968. Vol. 2, № 4. PP. 357-364.
Онищенко О.М., Киприанова Е.А., Ярошенко Л.В. Психрофильные бактерии родов Alteromonas и Psychrobacter, выделенных из воды Черного моря // Морской экологический журнал. 2008. Т. 7, № 1. С. 56-59.
Кузьмина Л.Ю., Галимзянова Н.Ф., Абдуллин Ш.Р., Рябова А.С. Микробиота пещеры Киндерлинская (Республика Башкортостан) // Микробиология. 2012. № 81. С. 273-281. doi: 10.1134/S0026261712010109
Мямин В.Е., Никитина Л.В., Чернявская М.И., Занюк А.А., Титок М.А., Лозюк С.К., Сидоренко А.В., Валентович Л.Н., Долгих А.В. Микробиологические исследования в районе участка Вечерний оазиса Холмы Тала (Восточная Антарктида) // Труды БГУ. Физиологические, биохимические и молекулярные основы функционирования биосистем. 2014. Т. 9, № 2. С. 58-67.
Ланкина Е.П., Хижняк С.В. Сравнительный анализ встречаемости бактерий-антагонистов к фитопатогенным грибам в бактериальных сообществах почв, почвоподобном субстрате и карстовых пещерах // Вестник КрасГАУ. 2013. Т. 2, № 77. С. 65-68.
Paun V.I., Lavin P., Chifriuc M.C., Purcarea C. First report on antibiotic resistance and antimicrobial activity of bacterial isolates from 13,000-year old cave ice core // Scientific Reports. 2021. № 11. P. 514. doi: org/10.1038/s41598-020-79754-5
Ewert M., Deming J.W. Sea ice microorganisms: environmental constraints and extracellular responses // Biology (Basel). 2013. Vol. 2, № 2. РР. 603-628. doi: 10.3390/biology2020603
Хижняк С.В., Илиенц И.Р., Рубчевская Л.П. Карстовые пещеры как источник психрофильных штаммов для ферментативной переработки сырья зерноперерабатывающей и плодоовощной отрасли и повышения пищевой биологической ценности продукции // Вестник КраеГАУ. 2012. № 5. С. 411-415.
Хижняк С.В., Таушева И.В., Березикова А.А. Психрофильные и психротолерантные гетеротрофные микрорганизмы карстовых полостей Средней Сибири // Экология. 2003. № 4. С. 261-266. doi: 10.1023/A:102 4537513439
Bajerski F., Ganzert L., Mangelsdorf K., Padur L., Lipski A., Wagner D. Chryseobacterium frigidisoli sp. nov., a psychrotolerant species of the family Flavobacteriaceae isolated from sandy permafrost from a glacier forefield // International Journal of Systematic and Evolutionary Microbiology. 2013. Vol. 63, № 7. PР. 2666-2671. doi: 10.1099/ijs.0.046904-0
Kmpfer P., Lodders N., Vaneechoutte M., Wauters G. Transfer of Sejongia antarctica, Sejongia jeonii and Sejongia marina to the genus Chryseobacterium as Chryseobacterium antarcticum comb. nov., Chryseobacterium jeonii comb. nov. and Chryseobacterium marinum comb. nov. // International Journal of Systematic and Evolutionary Microbiology. 2009. Vol. 59, № 9. PP. 2238-2240. doi: 10.1099/ijs.0.009142-0
Bowman J.P., Nichols D.S. Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia // International Journal of Systematic and Evolutionary Microbiology. 2005. Vol. 55, № 4. PP. 1471-1486. doi: 10.1099/ijs.0.63527-0
Парфенова В.В., Теркина Т.Я., Косторнова И.Г., Никулина И.Г., Черных В.И., Максимова Э.А. Микробное сообщество пресноводных губок оз. Байкал // Микробиология. 2008. № 4. С. 435-441. doi: 10.1134/S 1062359008040079
Берестовская Ю.Ю., Васильева Л.В., Честных О.В. Метанотрофы психрофильного микробного сообщества заполярной тундры России // Микробиология. 2002. Т. 71, № 4. С. 538-544. doi: 10.1023/A:1019805929529
Berestovskaya Y.Y., Lysenko A.M., Tourova T.P., Vasil'eva L.V. A Psychrotolerant Caulobacter sp. from Russian polar tundra soil // Microbiology. 2006. Vol. 75, № 3. PP. 317322. doi: 10.1134/S0026261706030131
Zhang D.C., Schumann P., Liu H.C. Arthrobacter alpinus sp. nov., a psychrophilic bacterium isolated from alpine soil // International Journal of Systematic and Evolutionary Microbiology. 2010. Vol. 60, № 9. РР. 2149-2153. doi: 10.1099/ijs.0.017178-0
Сорокин Н.Д., Афанасова Е.Н. Микробиологическая диагностика состояния почв и филлосферы лесных экосистем Сибири // Известия РАН. Серия биологическая. 2012. № 1. С. 100-108. doi: 10.1134/S1062359012010086
Tapia-Vazquez I., Sanchez-Cruz R., Arroyo-Dominguez M., Lira-Ruan V., Sanchez-Reyes A., Del Rayo Sanchez-Carbente M., Padilla-Chacon D., Batista-Garcia R.A., Folch-Mallol J.L. Isolation and characterization of psychrophilic and psychrotolerant plant-growth promoting microorganisms from a high-altitude volcano crater in Mexico // Microbiological Research. 2020. № 232. Р. 126394. doi: 10.1016/j.micres.2019.126394
Adapa V., Ramya L.N., Pulicherla K.K., Rao K.R.S.S. Cold-Adapted Fungi: Evaluation and Comparison of Their Habitats, Molecular Adaptations and Industrial Applications // Applied Biochemistry and Biotechnology. 2014. Vol. 172, № 5. PP. 2324-2337. doi: 10.1007/s12010-013-0685-1
Саралов А.И. Адаптивность экстремофилов Archaea и Bacteria // Микробиология. 2019. T. 88, № 4. С. 377-400. doi: 10.1134/S0026365619040104
Wang S.Y., Hu W., Lin X.Y., Wu Z.H., Li Y.Z. A novel cold-active xylanase from the cellulolytic myxobacterium Sorangium cellulosum So9733-1: gene cloning, expression, and enzymatic characterization // Applied Microbiology and Biotechnology. 2012. Vol. 93, № 4. PP. 1503-1512. doi: 10.1007/s00253-011-3480-3
D'Amico S., Collins T., Marx J.C., Feller G., Gerday C. Psychrophilic microorganisms: challenges for life // EMBO reports. 2006. Vol. 7, № 4. РР. 385-389. doi: 10.1038/sj.embor. 7400662
Klein W.M., Weber H., Marahiel M.A. Cold shock response of Bacillus subtilis: isoleucine-dependent switch in the fatty acid branching pattern for membrane adaptation to low temperatures // Journal of Bacteriology. 1999. Vol. 181, № 17. РР. 5341-5349. doi: 10.1128/JB. 181.17.5341-5349.1999
Gohrbandt M., Lipski A., Grimshaw J.W., Buttress J.A, Baig Z., Herkenhoffl B., Walter S., Kurre R., Deckers-Hebestreit G., Strahl H. Low membrane fluidity triggers lipid phase separation and protein segregation in living bacteria // The EMBO Journal. 2022. Vol. 4, № 5. Р. е109800. doi: 10.15252/embj.2021109800
Хижняк С.В., Илиенц И.Р., Рубчевская Л.П., Меняйло Л.Н. Карстовые пещеры как источник психрофильных штаммов для ферментативной переработки сырья зерноперерабатывающей и плодоовощной отрасли и повышения пищевой биологической ценности продукции // Вестник КрасГАУ. 2012. № 5. С. 411-415.
Заварзин Г.А., Колотилова Н.Н. Введение в природоведческую микробиологию : учеб. пособие. М. : Университет, 2001. 256 с.
Ермилова Е.В. Молекулярные аспекты адаптации прокариот. СПб. : Химиздат, 2012. 341 с.
Ксенофонтов Б.С. Основы микробиологии и экологической биотехнологии : учеб. пособие. М. : Инфра-М Форум, 2015. 224 с.
Hassan N. Temperature driven membrane lipid adaptation in glacial psychrophilic bacteria // Frontiers in Microbiology. 2020. № 11. Р. 824. doi: 10.3389/fmicb.2020.00824.
 Diversity of Psychrophilic Colonies and Their Biotechnological Potential | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2022. №  58. DOI: 10.17223/19988591/58/2

Diversity of Psychrophilic Colonies and Their Biotechnological Potential | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2022. № 58. DOI: 10.17223/19988591/58/2

Download full-text version
Counter downloads: 340