Morphological and Physicochemical Properties of Nanostructured Cellulose Obtained through Chemical and Biological Methods
The authors obtained samples of chemically pure, crystalline, micro-and nanostructured cellulose of various modifications using two approaches - biological and chemical. They studied these cellulose samples via scanning electron microscopy (SEM), thermogravimetric analysis, and infrared (IR) spectroscopy. To prepare cellulose microcrystals, they used the mild acid treatment method based on glycerol-acid mixtures for treating cotton fibers. They showed that the chemical processing of cotton fiber ensured its dispersion with generation of microcrystals surrounded by a partially preserved amorphous shell. The authors produced bacterial cellulose (BC) films using the Komagataeibacter xylinus C3 strain in surface cultivation conditions. With a view of obtaining higher-quality SEM images, they applied chemical fixation of lipids and proteins with critical drying to fix the process of nanofiber synthesis by bacterial cells. The two-step fixation method helped find the fibrillar structure of a cellulose film, while the morphology of bacterial cells was not deformed. The authors made a comparative analysis of the IR spectroscopy results between chemically synthesized cellulose microcrystals and BC. The obtained cellulose samples do not contain lignin and hemicellulose, both samples are highly crystalline. The BC has an ordered structure, higher crystallinity and gets carbonized when exposed to air pyrolysis. A thermogravimetric analysis of the samples shows the absence of thermally stable impurities. Both cellulose samples of biological and chemical origin are thermally stable, and the initial decomposition temperature is high enough for cellulose materials. These results show that the authors have managed to create nanocellulose materials that might be potentially applied in various industries, such as pharmaceuticals, functional composites, engineering, etc. The paper contains 6 Figures, 2 Tables, 29 References.
Keywords
thermogravimetry,
IR spectroscopy,
morphology,
cellulose microcrystals,
Bacterial celluloseAuthors
Vassilyeva Natalia V | Institute of combustion problems | watersonist@mail.ru |
Savitskaya Irina S. | Al-Farabi Kazakh National University | irasava_2006@mail.ru |
Zhantlessova Sirina D. | Al-Farabi Kazakh National University | sirina.zhantlessova@mail.ru |
Mansurov Zulkhair A. | Al-Farabi Kazakh National University; Institute of combustion problems | ZMansurov@kaznu.kz |
Smagulova Gaukhar T. | Institute of combustion problems | smagulova.gauhar@inbox.ru |
Всего: 5
References
Yoshino K, Matsuoka R, Nogami K, Yamanaka S, Watanabe K, Takahashi M, Honma M. Graphite film prepared by pyrolysis of bacterial cellulose. Journal of Applied Physics. 1990;68:1720-1725. doi: 10.1063/1.346600
Mukhamadeeva RM, Zhbankov RG, Sofin VF, Marchenko GN. Nizkochastotnaya IKspektroskopiya pri issledovanii cellyulozy i nitratov cellyulozy [Low-frequency IR spectroscopy in the study of cellulose and cellulose nitrates]. Uspekhi khimii = Advanced chemistry. 1993;62:351-364. doi: 10.1070/RC1993v062n04ABEH000020. In Russian, English summary
Keshk SM. Bacterial Cellulose Production and its Industrial Applications. J Bioprocess Biotech. 2014;4:150. doi: 10.4172/2155-9821.1000150
Ryngajłło M, Kubiak K, Jędrzejczak‐Krzepkowska M, Jacek P, Bielecki S. Comparative genomics of the Komagataeibacter strains - Efficient bionanocellulose producers. MicrobiologyOpen. 2019;8:e731. doi: 10.1002/mbo3.731
Tang W, Jia S, Jia Y, Yang H. The influence of fermentation conditions and posttreatment methods on porosity of bacterial cellulose membrane. World Journal of Microbiology and Biotechnology. 2009;26:125-131. doi: 10.1007/s11274-009-0151-y
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66(3):506-577. doi: 10.1128/MMBR.66.3.506-577.2002
Riemersma JC. Osmium tetroxide fixation of lipids: Nature of the reaction products. Journal of Histochemistry & Cytochemistry. 1963;11:436-442. doi: 10.1177/11.3.436
Zhao H, Xia J, Wang J, Yan X, Wang C, Lei T, Xian M, Zhang H. Production of bacterial cellulose using polysaccharide fermentation wastewater as inexpensive nutrient sources. Biotechnology & Biotechnological Equipment. 2018;32:350-356. doi: 10.1080/13102818. 2017.1418673
Gorgieva S, Trček J. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications. Nanomaterials (Basel). 2019;9(10):1352. doi: 10.3390/nano9101352
Mueller S, Weder C, Foster EJ. Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv. 2014;4:907-915. doi: 10.1039/c3ra46390g
Naz S, Ali JS, Zia M. Nanocellulose Isolation Characterization and Applications: A journey from non-remedial to biomedical claims. Bio-Design and Manufacturing. 2019;2:187-212. doi: 10.1007/s42242-019-00049-4
Mtibe A, Mandlevu Y, Linganiso LZ, Anandjiwala RD. Extraction of cellulose nanowhiskers from flax fibres and their reinforcing effect on poly(furfuryl) alcohol. Journal of Biobased Materials and Bioenergy. 2015;9:309-317. doi: 10.1166/jbmb.2015.1531
Deepa B, Abraham E, Pothan L. Biodegradable nanocomposite films based on sodium alginate and cellulose Nanofibrils. Materials. 2016;9:50. doi: 10.3390/ma9010050
Kasyapi N, Chaudhary V, Bhowmick AK. Bionanowhiskers from jute: Preparation and characterization. Carbohydrate Polymers. 2013;92:1116-1123. doi: 10.1016/j.carbpol.2012.10.021
Le Normand M, Moriana R, Ek M. Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective. Carbohydrate Polymers. 2014;111:979-987. doi: 10.1016/j.carbpol.2014.04.092
Trache D, Hussin MH, Haafiz MK, Thakur VK. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale. 2017;9:1763-1786. doi: 10.1039/c6nr09494e
Liu C, Li B, Du H, Lv D, Zhang Y, Yu G. Properties of nanocellulose isolated from Corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydrate Polymers. 2016;151:716-724. doi: 10.1016/j.carbpol.2016.06.025
Yang X, Han F, Xu C, Jiang, S, Huang L, Liu L. Effects of preparation methods on the morphology and properties of nanocellulose (NC) extracted from Corn Husk. Industrial Crops and Products. 2017;109:241-247. doi: 10.1016/j.indcrop.2017.08.032
Costa AFS, Almeida FCG, Vinhas GM, Sarubbo LA. Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources. Front Microbiol. 2017;8:2027. doi: 10.3389/fmicb.2017.02027
Hsieh YL. Chemical structure and properties of cotton. Cotton. USA: Woodhead Publishing; 2007. 1 p. doi:10.1533/9781845692483.1.3
Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition. 2011;50:5438-5466. doi: 10.1002/anie.201001273
Wang J, Wan YZ, Luo HL, Gao C, Huang Y. Immobilization of gelatin on bacterial cellulose nanofibers surface via crosslinking technique. Materials Science and Engineering C, Biomimetic Materials, Sensors and Systems. 2012;32:536-541. doi: 101016/jmsec201112006
Okiyama A, Shirae H, Kano H, Yamanaka S. Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter Aceti. Food Hydrocolloids. 1992;6:471-477. doi: 10.1016/s0268-005x(09)80032-5
Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Strømme M. Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer. 2007;48:7623-7631. doi: 10.1016/j.polymer.2007.10.039
Fernandes SN, Almeida PL, Monge N, Aguirre LE, Reis D, de Oliveira CL, Neto AM, Pieranski P, Godinho MH. Cellulose nanocrystals: Mind the Microgap in iridescent cellulose nanocrystal films. Advanced Materials. 2017;29:2. doi: 10.1002/adma.201770008
Qiao K, Zheng Y, Guo S, Tan J, Chen X, Li J, Xu D, Wang J. Hydrophilic nanofiber of bacterial cellulose guided the changes in the micro-structure and mechanical properties of NF-BC/PVA Composites Hydrogels. Composites Science and Technology. 2015;118:47-54. doi: 10.1016/j.compscitech.2015.08.004
Fernandes SN, Geng Y, Vignolini S, Glover BJ, Trindade AC, Canejo JP, et al. Structural color and iridescence in transparent sheared cellulosic films. Macromol Chem Phys. 2013:214:25-32. doi: 10.1002/Macp.201200351
Orts WJ, Godbout L, Marchessault RH, Revol JF. Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules. 1998;31:5717-5725. doi: 10.1021/ma9711452
Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose - a masterpiece of nature's arts. Journal of Materials Science. 2005;35:261-270. doi: 10.1023/A:1004775229149
Avcioglu NH. Bacterial cellulose: recent progress in production and industrial applications. World J Microbiol Biotechnol. 2022;38(5):86. doi: 10.1007/s11274-022-03271-y
Portela R, Leal CR, Almeida PL, Sobral RG. Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microbial Biotechnology. 2019;12:586-610. doi: 10.1111/1751-7915.13392
Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal. 2014;59:302-325. doi: 10.1016/j.eurpolymj.2014.07.025
Sjostrom E. Wood Chemistry: Fundamentals and Applications. California: Academic Press Inc; 1993. 293 p. doi: 10.1016/C2009-0-03289-9
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews. 2011;40:3941. doi: 10.1039/c0cs00108b
Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110(6):3479-3500. doi:10.1021/cr900339w
Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition. 2005;44:3358-3393. doi: 10.1002/anie.200460587