The Production of Bacterial Cellulose by Co-Cultivation of Komagataeibacter sucrofermentans with Dextran Producers Leuconostoc mesenteroides and Xanthan Xanthomonas campestris
Bacterial cellulose (BC) is an extracellular product of bacterial metabolism. Like plant cellulose, BC has the same molecular formula but its structure is significantly different. Due to its unique properties (high degree of crystallinity, purity, good water-holding capacity), BC is widely used in many areas of human life. However, despite all the advantages of BC over plant polymers, its production is a relatively expensive process. Thus, one of the ways to increase the polymer yield can be to jointly cultivate a BC producer strain with other polysaccharide producers. The positive effect of some water-soluble polysaccharides on the BC output is known from the literature data. In addition, many biosynthetic genes remain silent and not expressed in vitro, thereby severely limiting the chemical diversity of microbial compounds that can be obtained by fermentation. In contrast, the co-cultivation of two or more different microorganisms mimics a real "situation" where microorganisms coexist in complex microbial communities. It has been proven that competition or antagonism occurring within co-cultivation leads to a significant increase in the existing compounds and / or accumulation of new compounds which are not found in axial cultures of the producer strain. The purpose of this study is to investigate cocultivation as a way to increase the yield of BC during the cultivation of BC producers with other polysaccharide-forming strains. The strain of Komagataeibacter sucrofermentans B-11267 was used as a BC producer, Xanthomonas campestris was used as a xanthan producer, and Leuconostoc mesenteroides was used as a dextran producer. The cultivation was carried out under dynamic conditions on a medium with molasses. The polysaccharide yield was expressed as the absolute dry weight of the polymers per unit volume of the culture medium. We have studied the BC morphology using atomic force microscopy (AFM) and FTIR spectroscopy. Crystallinity was checked by X-ray diffraction analysis. The interest in BC makes it necessary to synthesize it in large quantities on an industrial scale. The problem of increasing productivity was solved by co-cultivating the BC producer Komagataeibacter sucrofermentans with the producers of dextran Leuconostoc mesenteroides and xanthan Xanthomonas campestris, since the addition of water-soluble polysaccharides is known to increase the viscosity of the medium and facilitate the dispersion of bacterial cellulose granules. Thereby increasing the number of free cells, which can accelerate sugar consumption and polymer formation. At the first stage of the study, the most optimal conditions for co-cultivation of the BC producer with the producers of xanthan and dextran were selected, namely, the optimal pH value of the medium. Monoculture of bacteria X. campestris, L. mesenteroides, and K. sucrofermentans was carried out at different pH values (See Fig. 1-3). Based on the data obtained, we can say that the most optimal pH value for co-cultivation of microorganisms is pH 5.0. In this regard, at the second stage of this study, we carried out joint cultivation of the BC producer strain K. sucrofermentans with the xanthan and dextran producers X. campestris and L. mesenteroides, respectively, on molasses medium. From the data presented (See Fig. 4), it can be seen that the largest amount of polysaccharide is formed on the third day during cocultivation of the BC producer and the dextran producer. The amount of BC was 5.99 ± 0.02 g/l, which is two and a half times higher than the amount of polymer formed during monocultivation of a BC producer (2.25 ± 0.05 g/l). Co-cultivation of the BC producer strain with the xanthan producer did not lead to an increase in the polysaccharide yield. Therefore, no further study of co-cultivation of these microorganisms was carried out. To assess the success of the joint cultivation of BC and dextran producer strains and investigate the properties of the obtained polysaccharide, studies using AFM, FTIR spectroscopy, and X-ray structural analysis were carried out. The surface relief of the obtained BC was studied using the AFM method (See Fig. 7). Analysis of the AFM images showed the presence of an association of K. sucrofermentans and L. mesenteroides cells in the BC. Also, the obtained BC was investigated using the method of FTIR spectroscopy (See Fig. 8). The obtained IR spectra show similarity of the detected peaks with the literature data of peaks corresponding to BC. To determine the degree of crystallinity, the structure of cellulose was studied by X-ray structural analysis (See Fig. 9). The degree of crystallinity of the studied cellulose samples is 64% and 32% with monocultivation of K. sucrofermentans and co-cultivation of K. sucrofermentans and L. mesenteroides, respectively. The article contains 9 Figures, 1 Table, 37 References. The Authors declare no conflict of interest.
Keywords
xanthan,
dextran,
bacterial cellulose,
microbial polysaccharides,
co-cultivationAuthors
Nazarova Natalia B. | Ogarev Mordovia State University | n.sapunowa2016@yandex.ru |
Liyaskina Elena V. | Ogarev Mordovia State University | liyaskina@yandex.ru |
Revin Viktor V. | Ogarev Mordovia State University | revinvv2010@yandex.ru |
Всего: 3
References
Castro C, Zuluaga R, Alvarez C, et al. Putaux J., Caro G., Rojas O.J., Mondragon I., Ganan P. Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus // Carbohydr. Polym. 2012. Vol. 89. P.1033-1037.>
Seto A., Saito Y. Effective cellulose production by a coculture of Komagataeibacter xylinus and Lactobacillus mali // Appl. Microbiol. Biotechnol. 2006. Vol. 73. No. 4. PP. 915-992.>
Сапунова Н.Б., Богатырева А.О., Щанкин М.В., Лияськина Е.В., Ревин В.В. Получение бактериальной целлюлозы на среде с мелассой // Вестник технологического университета. 2016. Т. 19. № 24. С. 154-156.>
Czaja W., Romanovicz D., Brown R. Structural investigations of microbial Cellulose produced in stationary and agitated culture // Cellulose. 2004. Vol.11. PP. 403-411. doi: 10.1023/B:CELL.0000046412.11983.61.>
Keshk S., Sameshima K. Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture // Enzyme Microb. Technol. 2006. Vol. 40. P. 4-8.>
Castro C., Zuluaga R., Putaux J.L., Caro G., Mondragon I., Ganan P. Structural characterization of bacterial cellulose produced by Komagataeibacter swingsii sp. from Colombian agroindustrial wastes // Carbohydrate Polym. 2011. Vol. 84. PP. 96-102.>
Ciolacu D., Ciolacu F., Popa V.I. Amorphous cellulose - structure and characterization // Cellulose chemistry and technology. - 2011. - Vol. 45, I.1. - P.13-21.>
Wu R.Q., Li Z.X., Yang J.P., Xing X.H., Shao D.Y., Xing, K.L. Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial Cellulose yield of a Gluconacetobacter xylinus strain // Cellulose. 2009. Vol. 17. P. 399-405.>
Ревин В.В., Лияськина Е.В., Покидько Б.В., Пименов Н.В., Марданов А.В., Равин Н.В. Характеристика нового штамма Xanthomonas campestris М 28 - продуцента ксантана, исследование генома, условий культивирования и физико-химических и реологических свойств полисахарида // Прикладная биохимия и микробиология. 2021. Том 57, № 3. С. 251-261.>
Marmann A., Aly A., Lin W., Wang B., Proksch P. Co-Cultivation - A Powerful Emerging Tool for Enhancing the Chemical Diversity of Microorganisms // Marine Drugs. 2014. Vol. 12. No. 2. PP. 1043-1065.>
Islam M.U., Ullah M.W., Khan S., Shah N., Park J.K. Strategies for cost-effective and enhanced production of bacterial cellulose // International Journal of Biological Macromolecules. 2017. Vol. 102. PP. 1166-1173.>
Revin V., Liyaskina E., Nazarkina M., Bogatyreva A., Shchankin M. Cost-effective production of bacterial cellulose using acidic food industry by-products // Brazilian Journal of Microbiology. 2018. Vol. 49. No. 1. PP. 1-9.>
Ishida T., Mitarai M., Sugano Y., Shoda M. Role of water-soluble polysaccharides in bacterial cellulose production // Biotechnol. Bioeng. 2003. Vol. 83. PP. 474-478. 10.1002/bit. 10690.>
Lin D., Lopez-Sanchez P., Li R., Li Z. Production of bacterial cellulose by Gluconaceto-bacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source // Bioresource Technology. 2014. Vol. 151. P. 113-119.>
Carvalho T., Guedes G., Sousa F.L., Freire C.S.R., Santos H.A. Latest advances on bacterial cellulose-based materials for wound healing, delivery systems, and tissue engineering // Biotechnol. J. 2019. Vol. 14. P. 1900059.>
Liu W., Due H., Zhang M., Liu K., Liu H., Xie H., Zhang X., Si C. Bacterial cellulose based composite scaffolds for biomedical applications: a review // ACS Sustain. Chem. Eng. 2020. Vol. 8. PP. 7536-7562.>
Solomevich S.O., Dmitruk E.I., Bychkovsky P.M., Nebytov A.E., Yurkshtovich T.L., Golub N.V. Fabrication of oxidized bacterial cellulose by nitrogen dioxide in chloro-form/cyclohexane as a highly loaded drug carrier for sustained release of cisplatin // Carbohydrate Polymers. 2020. Vol. 248. PP. 116745.>
Khan S., Ul-Islam M., Ullah M.W., Zhu Y., Narayanan K.B., Han S.S., Park J.K. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review // Int. J. Biol. Macromol. 2022. Vol. 209. PP. 9-30.>
Volova T.G., Prudnikova S.V., Kiselev E.G., Nemtsev I.V., Vasiliev A.D., Kuzmin A.P., Shishatskaya E.I. Bacterial Cellulose (BC) and BC Composites: Production and Properties // Nanomaterials. 2022. Vol. 12. PP. 192.>
Pang M., Huang Y., Meng F., ZHuang Y., Liu H., Du M., Ma Q., Wang Q., Chen Z., Chen L., Cai T., Cai Y. Application of bacterial cellulose in skin and bone tissue engineering // Eur. Polym. J. 2020. Vol. 122. PP. 109365.>
Revin V.V., Dolganov A.V., Liyaskina E.V., Nazarova N.B., Balandina A.V., Devyataeva A.A., Revin V.D. Characterizing Bacterial Cellulose Produced by Komagataeibacter su-crofermentans H-110 on Molasses Medium and Obtaining a Biocomposite Based on It for the Adsorption of Fluoride // Polymers. 2021. Vol. 13 (9). P. 1422.>
Ревин В.В., Лияськина Е.В., Пестов Н.А. Получение бактериальной целлюлозы и нанокомпозиционных материалов: монография. Саранск: Изд-во Мордов. ун-та, 2014. 128 с.>
Lee K.Y, Buldum G., Mantalaris A., Bismarck A. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites // Macromol. Biosci. 2014. Vol. 14. PP. 10-32.>
Sulaeva I., Henniges U., Rosenau T. Bacterial cellulose as a material for wound treatment: Properties and modifications. A review // Biotechnology Advances. 2015. Vol. 33. PP. 1547-1571.>
Hussain Z., Sajjad W., Khan T. Production of bacterial Cellulose from industrial wastes: a review // Cellulose. 2019. Vol. 26. PP. 2895-2911.>
Ullah H., Wahid F., Santos H.A, Khan T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites // Carbohydrate Polymer. 2016. Vol. 150. PP. 330-352.>
Singhsa P., Narain R., Manuspiya H. Physical structure variations of bacterial Cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions // Cellulose. 2018. Vol. 25. PP. 1571-1581.>
Ревин В.В, Лияськина Е.В., Сапунова Н.Б., Богатырева А.О. Выделение и характеристика штаммов - продуцентов бактериальной целлюлозы // Микробиология. 2020. Т. 89. № 1. - С. 88-98.>
Gorgieva S., Trcek J. Bacterial Cellulose: Production, Modification and Perspectives in Biomedical Applications // Nanomaterials. 2019. Vol. 9. No. 10. PP. 1352-1372.>
Ahmed J., Gultekinoglu M., Edirisinghe M. Bacterial cellulose micro-nano fibres for wound healing applications // Biotechnology Advances. 2020. Vol. 41. No. 8. PP. 1-14.>
Киселева О.И., Луценко С.В., Фельдман Н.Б., Гаврюшина И.А., Садыкова В.С., Пигалева М.А., Рубина М.С., Громовых Т.И. Структура популяции Komagataeibacter hansenii GH 1/2008 в статической культуре на различных источниках углерода // Вестник Томского государственного университета. Биология. 2021. № 53. С. 22-46.>
Blanco Parte F.G., Santoso S.P., Chou C.C., Verma V., Wang H.T., Ismadji S., Cheng, K.C. Current progress on the production, modification, and applications of bacterial cellulose // Critical Reviews in Biotechnology. 2020. Vol. 40. No. 16. PP. 1-18.>
Скворцова З.Н., Громовых Т.И., Грачев В.С., Траскин В.Ю. Физико-химическая механика бактериальной целлюлозы // Коллоидный журнал. 2019. Т. 81, № 4. С. 441-452.>
Rangaswamy B.E., Vanith K.P., Hungund B.S. Microbial Cellulose Production from Bacteria Isolated from Rotten Fruit // International Journal of Polymer Science. 2015. Vol. 2015. PP. 1-8.>
Revin V.V., Nazarova N.B., Tsareva E.E., Liyaskina E.V., Revin V.D., Pestov N.A. Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect // Frontiers in Bioengineering and Biotechnology. 2020. Vol. 8. PP. 603407.>
Revin V.V., Liyaskina E.V., Parchaykina M.V., Kuzmenko T.P., Kurgaeva I.V., Revin V.D., Ullah M.W. Bacterial Cellulose-Based Polymer Nanocomposites: A Review // Polymers. 2022. Vol. 14. P. 4670.>
Moniri M., Boroumand Moghaddam A., Azizi S., Rahim R., Ariff A., Saad W., Mohamad R. Production and Status of Bacterial Cellulose in Biomedical Engineering // Nanomaterials. 2017. Vol. 7. No. 9. PP. 257-283.>