Dynamics of Element Stocks in Deadwood and Soil After a Mass Windthrow in a Broad-Leaved Forest on Sandy Soils
Mass windthrow leads to a sharp increase in the stocks of woody detritus in forest ecosystems. Although highly relevant in connection with the tasks of carbon regulation of the economy, contributions of wood detritus to element cycles are poorly studied. The aim of this study was to estimate the dynamics of carbon, nitrogen, calcium, potassium, magnesium, and phosphorus in downed trunks and humus soil horizon of Podzols and Arenosols, 14 years after a mass windthrow in a mesic broad-leaved forest located in the Kaluzhskie Zaseki State Nature Reserve (Russia, Kaluga Region). At the 2006 windthrow area (53°30'N, 35°35'E), deadwood stocks were evaluated on transects in 2010 and 2020. In 2020, 167 samples at 5 decomposition stages were collected from 49 fallen logs and 24 standing live trees of seven species: Acer plat-anoides, Betula pendula, Fraxinus excelsior, Populus tremula, Quercus robur, Tilia cordata, Ulmus glabra, and Picea abies. Sixty-two paired soil samples were collected from the upper 5 cm of soil beneath the overlying trunks of trees of different species and next to the trunks, and 10 soil samples were collected in the forest surrounding the windthrow area. The volume of deadwood decreased by 1.5 times and the stocks of elements in deadwood decreased by 1.7-2.5 times (for N, Mg and K) and 2.7-3.5 times (for C, P and Ca) over 14 years after the windthrow (See Table 3). There was an increase in the proportion of element stocks contained in the deadwood of ring-porous species (Quer-cus, Fraxinus, and Ulmus), against a decrease in their proportion in the deadwood of diffuse-porous species (Populus, Betula, Tilia, and Acer). The state of soils with respect to the analysed elements was assessed as stable, with a significant decrease in the C/N ratio from 14 in the surrounding forest to 12 in the windthrow area (See Table 4). Total stocks of elements both in deadwood and soil 14 years after a windthrow decreased not so much as their stock in deadwood: C, Ca and K by 2 times, N and Mg by 10 and 20%, respectively. Before the windthrow, the tree trunks had contained about 80% of total C stock and 20% of total N stock; after 14 years, these values decreased to 60% and 15% in lying trunks (See Fig. 3). In general, 14 years after the windthrow, the stocks of total N, mobile forms of Ca and Mg were higher in soil than in deadwood, and deadwood remained the main store of C, P and K. Our study has shown that windthrows (including the mass ones) are important elements in the natural dynamics of forest ecosystems. A joint study of the processes of deadwood decomposition and the dynamics of soil characteristics, changes in the content and stocks of elements in wood, which pass into mobile forms of the soil stock in the process of wood decay, allows us to assess the quality of forests performing their ecosystem functions, such as regulating and supporting. The difference in the rate of loss of carbon and other elements by diffuse-porous and ring-porous tree species must be taken into account in forest management aiming to regulate carbon in economy -planting of ring-porous species and preservation of their deadwood contribute to a relatively long-term deposition of carbon. The article contains 3 Figures, 5 Tables, and 56 References.
Keywords
coarse woody debris,
wood decay,
deadwood decomposition,
wood elements composition,
soil organic matter,
carbon regulationAuthors
Khanina Larisa G. | M.V. Keldysh Institute of Applied Mathematics of RAS | khanina.larisa@gmail.com |
Bobrovsky Maxim V. | Pushchino Scientific Center for Biological Research RAS | maxim.bobrovsky@gmail.com |
Smirnov Vadim E. | Center for Forest Ecology and Productivity of the Russian Academy of Sciences; M.V. Keldysh Institute of Applied Mathematics of RAS | vesmirnov@gmail.com |
Всего: 3
References
Thom D., Seidl R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests // Biological Reviews. 2016. Vol. 91. PP. 760-781. 10.1111/brv. 12193.
Magnusson R.I., Tietema A., Cornelissen J.H.C., Hefting M.M., Kalbitz K. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils // Forest Ecology and Management. 2016. Vol. 377. PP. 1-15.
Курганова И.Н., Лопес де Гереню В.О., Мякшина Т.Н., Сапронов Д.В., Савин И.Ю., Шорохова Е.В. Баланс углерода в лесных экосистемах южного Подмосковья в условиях усиления засушливости климата // Лесоведение. 2016. № 5. С. 332-345.
Piaszczyk W., Blonska E., Lasota J. Soil biochemical properties and stabilisation of soil organic matter in relation to deadwood of different species // FEMS Microbiology Ecology. 2019. Vol. 95, № 3. fiz011.
Курганова И.Н., Лопес де Гереню В.О., Ипп С.Л., Каганов В.В., Хорошаев Д.А., Рухович Д.И., Сумин Ю.В., Дурманов Н.Д., Кузяков Я.В. Пилотный карбоновый полигон в России: анализ запасов углерода в почвах и растительности // Почвы и окружающая среда. 2022. Т. 5, № 2. e169.
Lof M., Brunet J., Hickler T., Birkedal M., Jensen A. Restoring broadleaved forests in southern Sweden as climate changes // A Goal-Oriented Approach to Forest Landscape Restoration / ed. by Stanturf J., Madsen P., Lamb D. World Forests. 2012. Vol. 16. Springer, Dordrecht. PP. 373-391.
Растительность европейской части СССР. Л.: Наука, 1980. 431 с.
Попадюк Р.В., Смирнова О.В., Заугольнова Л.Б., Ханина Л.Г., Бобровский М.В., Яницкая Т.О. Заповедник "Калужские засеки" // Сукцессионные процессы в заповедниках России и проблемы сохранения биологического разнообразия / ред. О. В. Смирнова, Е.С. Шапошников. СПб.: Российское ботаническое общество, 1999. С. 58-105.
Булыгина О.Н., Разуваев В.Н., Трофименко Л.Т., Швец Н.В. Описание массива данных среднемесячной температуры воздуха на станциях России. Свидетельство о государственной регистрации базы данных № 2014621485. URL: http://meteo.ru/data/156-temperature#описание-массива-данных (дата обращения: 29.09.2022).
Ильин Б.М., Булыгина О.Н., Богданова Э.Г., Веселов В.М., Гаврилова С.Ю. Описание массива месячных суммосадков, с устранением систематических погрешностей осадкомерных приборов. URL: http://meteo.ru/data/506-mesyachnye-summy-osadkov-s-us-traneniemsistematicheskikh-pogreshnostej-osadkomernykh-priborov (дата обращения: 25.10.2022).
Shikhov A.N., Chernokulsky A.V., Azhigov I.O., Semakina A.V. A satellite-derived database for stand-replacing windthrow events in boreal forests of European Russia in 19862017 // Earth Syst. Sci. Data. 2020. Vol. 12. PP. 3489-3513.
Бобровский М.В., Стаменов М.Н. Катастрофический ветровал 2006 года на территории заповедника "Калужские засеки" // Лесоведение. 2020. № 6. С. 523-536.
World Reference Base for Soil Resources. 2006. World Soil Resource Reports No. 103. FAO, Rome.
Renvall P.Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland // Karstenia. 1995. Vol. 35. PP. 1-51.
Khanina L.G., Bobrovsky M.V. Value of large Quercus robur fallen logs in enhancing the species diversity of vascular plants in an old-growth mesic broad-leaved forest in the Central Russian Upland // Forest Ecology and Management. 2021. Vol. 491. 119172.
Ханина Л.Г., Смирнов В.Э., Бобровский М.В. Элементный состав валежа различных древесных пород и стадий разложения в широколиственном лесу заповедника "Калужские засеки" // Лесоведение. 2023. № 4. С. 353-368.
Khanina L., Bobrovsky M., Smirnov V., Romanov M. Wood decomposition, carbon, nitrogen, and pH values in logs of 8 tree species 14 and 15 years after a catastrophic windthrow in a mesic broad-leaved forest in the East European plain // Forest Ecology and Management. 2023. Vol. 545. 121275.
Fraver S., Milo A.M., Bradford J.B., D'Amato A.W., Kenefic L., Palik B.J., Woodall C.W., Brissette J. Woody debris volume depletion through decay: implications for biomass and carbon accounting // Ecosystems. 2013. Vol. 16. PP. 1262-1272.
Бенькова В.Е., Швейнгрубер Ф.Х. Анатомия древесины растений России. Берн: Хаупт, 2004. 465 с.
Cornelissen J.H.C., Sass-Klaassen U., Poorter L., van Geffen K., van Logtestijn R.S.P., van Hal J. et al. Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment // Ambio. 2012. Vol. 41. PP. 231-245.
Yang S., Sterck F.J., Sass-Klaassen U., Cornelissen J.H.C., van Logtestijn R.S.P., Hefting M., Goudzwaard L., Zuo J., Poorter L. Stem trait spectra underpin multiple functions of temperate tree species // Frontiers in Plant Science. 2022. Vol. 13. 769551.
Теория и практика химического анализа почв / под ред. Л. А. Воробьевой. М.: ГЕОС, 2006. 400 с.
Теории и методы физики почв / под ред. Е.В. Шеина и Л.О. Карпачевского. М.: Гриф и К, 2007. 616 с.
Воробьева Л.А., Ладонин Д.В., Лопухина О.В., Рудакова Т.А., Кирюшин А.В. Химический анализ почв. Вопросы и ответы. М., 2011. 186 с.
R: A language and environment for statistical computing. R Foundation for Statistical Computing. R Development Core Team. Vienna, Austria, 2022.
Husson F., Le S., Pages J. Exploratory Multivariate Analysis by Example Using R. London: Chapman & Hall/CRC Press, 2017. 248 p.
Замолодчиков Д.Г., Грабовский В.И., Каганов В.В. Натурная и модельная оценки углерода валежа в лесах Костромской области // Лесоведение. 2013. № 4. С. 3-11.
Herrmann S., Kahl T., Bauhus J. Decomposition dynamics of coarse woody debris of three important central European tree species // Forest Ecosystems. 2015. Vol. 2. Р. 27.
Privetivy T., Samonil P. Variation in downed deadwood density, biomass, and moisture during decomposition in a natural temperate forest // Forests. 2021. Vol. 12. 1352.
Petritan I.C., Mihaila V.-V., Yuste J.C., Bouriaud O., Petritan A.M. Deadwood density, C stocks and their controlling factors in a beech-silver fir mixed virgin European forest // Forest Ecology and Management. 2023. Vol. 539. 121007.
Woodall C., Monleon V., Fraver S., Russell M., Hatfield M., Campbell J., Domke G. The downed and dead wood inventory of forests in the United States // Sci. Data. 2019. Vol. 6. 180303.
Knoke T., Kindu M., Schneider T., Gobakken T. Inventory of forest attributes to support the integration of non-provisioning ecosystem services and biodiversity into forest plan-ning-from collecting data to providing information // Current Forestry Reports. 2021. Vol. 7 PP. 38-58.
Calvaruso C., Kirchen G., Laurent S.-A., Redon P.-O., Turpault M.-P. Relationship between soil nutritive resources and the growth and mineral nutrition of a beech (Fagus sylvatica) stand along a soil sequence // Catena. 2017. Vol. 155. PP. 156-169.
Baek G., Bae E.J., Kim C. Nutrient stocks of Japanese blue oak (Quercus glauca Thunb.) stands on different soil parent materials // Forest Science and Technology. 2020. Vol. 16, No. 4. PP. 180-187.
Wellbrock N., Gruneberg E., Riedel T., Polley H. Carbon stocks in tree biomass and soils of German forests // Cent. Eur. For. J. 2017. Vol. 63. PP. 105-112.
Hotta W., Morimoto J., Inoue T., Suzuki S.N., Umebayashi T., Owari T., Shibata H., Ishibashi S., Hara T., Nakamura F. Recovery and allocation of carbon stocks in boreal forests 64 years after catastrophic windthrow and salvage logging in northern Japan // Forest Ecology and Management. 2020. Vol. 468. 118169.
Romashkin I., Shorohova E., Kapitsa E., Galibina N., Nikerova K. Substrate quality regulates density loss, cellulose degradation and nitrogen dynamics in downed woody debris in a boreal forest // Forest Ecology and Management. 2021. Vol. 491. 119143.
Шорохова Е.В., Капица Е.А., Корепин А. А. Депонирование углерода в коренных и вторичных таежных ельниках Вепсского леса // Леса России: политика, промышленность, наука, образование: материалы VII Всероссийской научно-технической конференции. СПб.: Санкт-Петербургский государственный лесотехнический университет имени С.М. Кирова, 2022. С. 406-409.
Khanna P.K., Bauhus J., Meiwes K.J., Kohler M., Rumpf S., Schonfelder E. Assessment of changes in the phosphorus status of forest ecosystems in Germany - literature review and analysis of existing data. A report to the German Federal Ministry of Food, Agriculture and Consumer Protection. 2007. Freiberg, Gottingen, Germany. URL: https://www.nw-fva.de/fileadmin/nwfva/publikationen/pdf/khanna_2007_assessment_of_changes_in.pdf (access: 29.09.2022).
Никитишен В.И., Личко В.И., Курганова Е.В. Фосфор в агроэкосистемах на серых лесных почвах ополий Центральной России // Почвоведение. 2008. № 8. С. 983-996.
Niederberger J., Kohler M., Bauhus J. Distribution of phosphorus fractions with different plant availability in German forest soils and their relationship with common soil properties and foliar P contents // Soil. 2019. Vol. 5. PP. 189-204.
Бурдуковский М.Л., Перепелкина П.А. Агроэкологическое состояние почв и восстановление растительности в залежных экосистемах // Биота и среда природных территорий. 2022. Т. 10, № 2. С. 28-36.
Eremina D.V., Kayugina S.M. Phosphorus-potassium state as an element of natural fertility of gray forest soils of Western Siberia // IOP Conf. Ser.: Earth Environ. Sci. 2022. Vol. 1043. 012017.
Arnstadt T., Hoppe B., Kahl T., Kellner H., Kruger D., Bauhus J., Hofrichter M. Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris // Forest Ecology and Management. 2016. Vol. 382. PP. 129-142.
Бобровский М.В. Козельские засеки (эколого-исторический очерк). Калуга: Изд-во Н. Бочкаревой, 2002. 92 с.
Kahl T., Mund M., Bauhus J., Schulze E.-D. Dissolved organic carbon from European beech logs: Patterns of input to and retention by surface soil // Ecoscience. 2012. Vol. 19, No. 4. PP. 364-373.
Bantle A., Borken W., Ellerbrock R.H., Schulze E.D., Weisser W.W., Matzner E. Quantity and quality of dissolved organic carbon released from coarse woody debris of different tree species in the early phase of decomposition // Forest Ecology and Management. 2014. Vol. 329. PP. 287-294.
Bade C., Jacob M., Leuschner C., Hauck M. Chemical properties of decaying wood in an old-growth spruce forest and effects on soil chemistry // Biogeochemistry. 2015. Vol. 122. PP. 1-13.
Blonska E., Kacprzyk M., Spolnik A. Effect of deadwood of different tree species in various stages of decomposition on biochemical soil properties and carbon storage // Ecological Research. 2017. Vol. 32. PP. 193-203.
Blonska E., Lasota J., Piaszczyk W. Dissolved carbon and nitrogen release from deadwood of different tree species in various stages of decomposition // Soil Science and Plant Nutrition. 2019. Vol. 65, No. 1. PP. 100-107.
Blonska E., Piaszczyk W., Lasota J. Patterns and driving factors of ecological stoichiometry in system of deadwood and soil in mountains forest ecosystem // Scientific Reports. 2023. Vol. 13. 5676.
Wambsganss J., Stutz K.P., Lang F. European beech deadwood can increase soil organic carbon sequestration in forest topsoils // Forest Ecology and Management. 2017. Vol. 405. PP. 200-209.
Yuan J., Hou L., Wei X., Shang Z., Cheng F., Zhang S. Decay and nutrient dynamics of coarse woody debris in the Qinling Mountains, China // PLoS ONE. 2017. Vol. 12, No. 4. e0175203.
Minnich C., Persoh D., Poll C., Borken W. Changes in chemical and microbial soil parameters following 8 years of deadwood decay: an experiment with logs of 13 tree species in 30 forests // Ecosystems. 2021. Vol. 24. PP. 955-967.
Ханина Л.Г., Бобровский М.В., Смирнов В.Э., Иващенко К.В., Журавлева А.И., Жмайлов И.В. Влияние массового ветровала в широколиственном лесу на свойства песчаных и суглинистых почв // Математическая биология и биоинформатика: доклады международной конференции / под ред. В.Д. Лахно. Т. 9. Пущино: ИМПБ РАН, 2022. Ст. № e46.
Лукина Н.В. Глобальные вызовы и лесные экосистемы // Вестник Российской академии наук. 2020. Т. 90, № 6. С. 528-532.