Effects of abiotic factors on the structure of fungal complexes in the pelagial of the Black and Azov Seas in summer 2019 | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2023. № 62. DOI: 10.17223/19988591/62/6

Effects of abiotic factors on the structure of fungal complexes in the pelagial of the Black and Azov Seas in summer 2019

In cruise 108 of R/V Professor Vodyanitsky (11.07-03.08.2019), comprehensive studies of pelagic ecosystems of the Black Sea and the Sea of Azov were carried out within the economic zone of the Russian Federation. The purpose of the work is to study the species composition and spatial distribution of cultivable marine microscopic fungi in relation to the physicochemical factors of seawater. In the Black Sea, 42 water samples were taken at 14 stations and in the Sea of Azov, 20 samples at 10 stations. In the Black Sea, water samples were taken in the surface layer (1 m), in thermocline (a water layer in which the temperature gradient differs sharply from the gradients above and below) and below thermocline. In the Sea of Azov, water samples were taken in the surface (0.5 m) and near-bottom (9-11 m) layers. The effects of the following environmental factors on the structure of fungal complexes were analyzed: depth, water temperature, pH, salinity, concentrations of O2, NO-2, NO-3, NH+4, Nорг, PO3-4, Рорг, Si . The data were processed using MS Excel and PRIMER® 5.2.8 statistical software package (the functions Similarity, BIOENV, CLUSTER, and MDS). In total, 35 species of fungi from 17 genera, 12 families, 11 orders and 6 classes of phylum Ascomycota were identified, and there was a group of Fungi spp. that were not identified. In the Black Sea, 35 species were identified, in the Sea of Azov, there were 8 species from 5 genera, 4 families, 4 orders, 3 classes, and a group of Fungi spp. All micromycete species found in the Sea of Azov were also present in the Black Sea. The highest frequency of occurrence was noted for the species Exophiala dermatitidis (17.0%), Cladosporium cladosporioides (23.1%), and Cladosporium sphaerospermum (35.4%). The similarity (according to the Bray-Curtis coefficient) of the mycobiota of the seas in terms of quantitative indices of species richness was 37.8%, and 40.0% in terms of the species composition. In the Black Sea, the number of fungal species varied from 25 to 27 in the water layers, with the average abundance ranging from 16643 to 17867 CFU/L. In the Sea of Azov, the number of species varied from 5 (surface layer) to 9 (bottom layer), with the average abundance being in the range of 7100-7500 CFU/L (see Table 2). For the stations of both the Black Sea and the Sea of Azov, coefficients of statistically significant Spearman's correlations were calculated. They were determined by the combinations of 4 variables: sampling depth and concentrations of NO-2, NO-3, Si (ρmax = 0.503-0.513). The cluster and nonmetric multidimensional scaling (MDS ordination) in two dimensions, based on similarity coefficients for 4 significant factors at the level of ρmax = 0.503, divided the stations into 3 groups. Group I consisted of coastal stations of the Caucasian coast and adjacent open waters, Group II included coastal and seaward marine stations of the northern and central parts of the Black Sea. Group III included all stations of the Sea of Azov. The Bray-Curtis similarity coefficients for the quantitative indicators of the fungal complexes varied from 34.1% (groups I and III) to 52.0% (groups I and II), and for the species structure they varied from 38.7 (groups I and III; 5 common species and the Fungi sp. group) to 58.8% (groups I and II; 14 common species and the Fungi sp. group). Groups I and II are in the Black Sea, their similarity coefficients are greater than 50%, and the habitat conditions are similar. Consequently, the mycocomplexes of these groups are divided conditionally. The MDS analysis yielded a graphical representation of the fungal abundance and the values of the determinant variables in the groups. The dependence of the number of species and the fungal abundance in the mycocomplexes of the groups in the Black Sea and the Sea of Azov on the values of the determinant abiotic variables was established: direct proportionality for depth and – 3 NO and inverse proportionality for – 2 NO and Si. The values of the obtained correlation coefficients are not very high, which indicates that the structure of mycocomplexes was additionally affected by the factors that were not taken into account in our study.

Download file
Counter downloads: 18

Keywords

marine planktonic fungi, nitrite, nitrate, silicate, depth, Alternaria, Aspergillus, Penicillium

Authors

NameOrganizationE-mail
Kopytina Nadezhda I.I.D. Papanin Institute for Biology of Inland Waters, Russian Academy of Scienceskopytina_n@mail.ru
Rodionova Nataliya Ju.A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciencesrodionova153@rambler.ru
Bocharova Elena A.A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciencesbea.medik@mail.ru
Всего: 3

References

About Marine Fungi. URL: https://marinefungi.org/ (accessed: 09.01.2023).
Brandon T.H., Vonnahmea T.R., Peng X., Jones E.B. G., Heuzé C. Global diversity and geography of planktonic marine fungi // Botanica Marina. 2019. Vol. 63, № 2. PP. 121-139.
Vera J., Gutiérrez M.H., Palfner G., Pantoja S. Diversity of culturable filamentous Ascomycetes in the eastern South Pacific Ocean off Chile // World Journal of Microbiology & Biotechnology. 2017. Vol. 33, № 8. P. 157.
Pham T.T., Dinh K.V., Nguyen V.D. Biodiversity and enzyme activity of marine fungi with 28 new records from the tropical coastal ecosystems in Vietnam // Mycobiology. 2021. Vol. 49, № 6. PP. 559-581.
Wang X., Singh P., Gao Z., Zhang X., Johnson Z.I., Wang G. Distribution and diversity of planktonic fungi in the west Pacific warm pool // PLoS One. 2014. Vol. 9, № 7. P. e101523.
Taylor J.D., Cunliffe M. Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance // The ISME Journal. 2016. Vol. 10, № 9. PP. 2118-2128.
Wang Y., Sen B., He Y., Xie N., Wang G. Spatiotemporal distribution and assemblages of planktonic fungi in the coastal waters of the Bohai sea // Frontiers in Microbiology. 2018. Vol. 9. P. 584.
Gutiérrez M.H., Pantoja S., Tejos E., Quiñones R.A. The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile // Marine Biology. 2010. Vol. 158, № 1. PP. 205-219.
Hassett B.T., Borrego E.J., Vonnahme T.R., Rȁmȁ T., Kolomiets M.V., Gradinger R. Arctic marine fungi: biomass, functional genes, and putative ecological roles // The ISME Journal. 2019. Vol. 13. PP. 1484-1496.
Gao Z., Johnson Z.I., Wang G. Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters // The ISME Journal. 2010. Vol. 4, № 1. PP. 111-120.
Wang Y., Sen K., He Y., Xie Y., Wang G. Impact of environmental gradients on the abundance and diversity of planktonic fungi across coastal habitats of contrasting trophic status // Science of the Total Environment. 2019. Vol. 683. PP. 822-833. 10.1016/j.scitotenv. 2019.05.204.
Копытина Н.И. Микобиота пелагиали Одесского региона северо-западной части Чёрного моря // Вестник Томского государственного университета. Биология. 2020. № 52. С. 140-163.
Крисс А.Е. Морская микробиология (глубоководная). М.: Изд-во АН СССР, 1959. 455 с.
Копытина Н.И. Абиотические условия распределения пропагул высших морских грибов в разных водных массах северо-западной части Черного моря // Экологическая безопасность прибрежной и шельфовой зон и комплексное использование ресурсов шельфа. 2007. № 15. С. 459-464.
Копытина Н.И., Тарасюк И.В. Водные грибы пелагиали авандельты реки Дунай // Мiкробiологiя i бiотехнологiя. 2010. № 1. С. 37-43.
Banos S., Gysi D.M., Richter-Heitmann T., Glöckner F.O., Boersma M., Wiltshire K.H., Gerdts G., Wichels A., Reich M. Seasonal dynamics of pelagic mycoplanktonic communities: interplay of taxon abundance, temporal occurrence, and biotic interactions // Frontiers in microbiology. 2020. Vol. 11. P. 1305.
Sen K., Sen B., Wang G. Diversity, abundance, and ecological roles of planktonic fungi in marine environments // Journal of fungi (Basel, Switzerland). 2022. Vol. 8, № 5. P. 491.
Meyers S.P., Ahearn D.G., Roth F.J. Mycological investigations of the Black Sea // Bulletin of Marine Science. 1967. Vol. 17, № 3. PP. 576-596.
Билай В.И., Коваль Э.З. Аспергиллы: Определитель. Киев: Наукова думка, 1988. 202 с.
Clinical fungi atlas of clinical fungi / ed. by G.S. De Hoog, J. Guarro, J. Gené, M.J. Figueras. Utrecht: CBS; Spain: Reus, 2000. 1126 p.
Refai M., Abo H. El-Yazid, Tawakkol W. Monograph on the genus Penicillium. 2015. 157 p.
Index Fungorum. URL: http://www.indexfungorum.org/names/Names.asp (accessed: 01.10.-09.02.2023).
Clarke K.R., Gorley R.N., Somerfield P.J., Warwickb R.M. Change in marine communities: an approach to statistical analysis and interpretation. 3rd ed. PRIMER-E: Plymouth, 2014. 262 p.
Петров А.Н., Неврова Е.Л., Малахова Л.В. Многомерный анализ распределения бентосных диатомовых (Bacillariophyta) в поле градиентов абиотических факторов в Севастопольской бухте (Чёрное море, Крым) // Морской экологический журнал. 2005. Т. 4, № 3. C. 65-77.
Jones E.B.G., Suetrong S., Sakayaroj J., Bahkali A.H., Abdel-Wahab M.A., Boekhout T., Pang K.-L. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota // Fungal Diversity. 2015. Vol. 73. PP. 1-72.
Kopytina N.I., Bocharova E.A. Fouling communities of microscopic fungi on various substrates of the Black Sea // Biosystems Diversity. 2022. Vol. 29, № 4. PP. 345-353.
Приказ Минсельхоза России от 13 декабря 2016 г. № 552 "Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения" (с изменениями на 10.03.2020).
Федирко А.В., Артамонов Ю.В., Скрипалева Е.А., Никольский Н.В. Пространственные особенности гидрологической структуры вод северной части Черного моря по данным измерений в 108-м рейсе НИС "Профессор Водяницкий" // Моря России: исследования береговой и шельфовой зон: тезисы докладов Всероссийской научной конференции (XXVIII Береговая конференция). Севастополь, 2020. С. 192-194.
Артемчук Н.Я. Микофлора морей СССР. М.: Наука, 1981. 190 с.
Âpas M., Hulea A. Mycromyceta // Analele universitatii "Ovidius" Constanta. Seria BiologieEcologie. 1998. Vol. 2. PP. 7-9.
Копытина Н.И., Дудка И.А. Таксономическое разнообразие микобиоты прибрежных вод Крыма (Чёрное море) // Морской биологический журнал. 2016. Т. 1, № 2. С. 27-38.
Бубнова Е.Н. Грибы прибрежной зоны Чёрного моря в районе Голубой бухты (восточное побережье, окрестности г. Геленджика) // Микология и фитопатология. 2014. Т. 48, вып. 1. С. 20-30.
Кузнецов Е.А. Грибы Азовского моря // Проблемы литодинамики и экосистем Азовского моря и Керченского пролива: тезисы докладов международной научно-практической конференции / под ред. Г.Г. Матишова. Ростов н/Д, 2004. С. 47-49.
Семёнова Т.А. Микобиота водоемов среднего Поволжья: дис.... канд. биол. наук. М.: Московский государственный университет им. М.В. Ломоносова, 1994. 145 c.
Ghorbani-Choboghlo H., Khosravi A.R., Sharifzadeh A., Taghavi M., Darvishi S., Ashrafi Tamami I., Erfanmanesh A. Gastrointestinal microflora of captured stellate sturgeon (Acipenser stellatus, Pallas, 1771) from Southeast Caspian Sea, Iran // Iranian Journal of Fisheries Sciences. 2014. Vol. 13, № 2. PP. 319-329.
Копытина Н.И. Водные микроскопические грибы Понто-Каспийского бассейна (чек-лист, синонимика) / под ред. Л.И. Рябушко. Воронеж: Ковчег, 2018. 292 с.
Mitchell J.I., Zuccaro A. Sequences, the environment and fungi // Mycologist. 2006. Vol. 20, № 2. PP. 62-74.
Duan Y., Xie N., Song Z., Ward C.S., Yung C.-M., Hunt D.E., Johnson Z.I., Wang G. A High-resolution time series reveals distinct seasonal patterns of planktonic fungi at a temperate coastal ocean site (Beaufort, North Carolina, USA) // Applied and Environmental Microbiology. 2018. Vol. 84, № 21. PP. e00967-18.
Priest T., Fuchs B., Amann R., Reich M. Diversity and biomass dynamics of unicellular marine fungi during a spring phytoplankton bloom // Environmental Microbiology. 2021. Vol. 23, № 1. PP. 448-463.
Алтон Л.В. Выживаемость некоторых видов рода Fusarium в морской и речной воде // Микология и фитопатология. 1985. Т. 19, вып. 3. С. 193-199.
Алтон Л.В. Жизнеспособность различных культур микроскопических грибов дерново-подзолистой почвы при различных температурах морской и речной воды // Микробиология. 1983. Т. 52, № 3. С. 482-486.
Kis-Papo T.. Oren A., Wasser S.P., Nevo E. Survival of filamentous fungi in hypersaline Dead Sea water // Microbial Ecology. 2003 Vol. 45, № 2. PP. 183-190.
El-Meleigy M.A., Hoseiny E.N., Ahmed S.A., Al-Hoseiny A.M. Isolation, identification, morphogenesis and ultrastructure // Journal of Applied Sciences in Environmental Sanitation. 2010. Vol. 5, № 2. PP. 201-212.
Беккер З.Э. Физиология и биохимия грибов. М.: Изд-во Моск. ун-та, 1988. 230 с.
Wegley L., Edwards R., Rodriguez-Brito B., Liu H., Rohwer F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides // Environmental Microbiology. 2007. Vol. 9, № 11. PP. 2707-2719.
 Effects of abiotic factors on the structure of fungal complexes in the pelagial of the Black and Azov Seas in summer 2019 | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2023. №  62. DOI: 10.17223/19988591/62/6

Effects of abiotic factors on the structure of fungal complexes in the pelagial of the Black and Azov Seas in summer 2019 | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2023. № 62. DOI: 10.17223/19988591/62/6

Download full-text version
Counter downloads: 226