In vitro assessment of ligninolytic and cellulolytic activities for 14 Agaricomycetes species, new to Bryansk Oblast (European Russia) | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2023. № 63. DOI: 10.17223/19988591/63/4

In vitro assessment of ligninolytic and cellulolytic activities for 14 Agaricomycetes species, new to Bryansk Oblast (European Russia)

Xylotrophic basidiomycete fungi take a unique place in the functional structure of forest ecosystems because, on the one hand, they possess an extensive complex of enzymes involved in lignin modification and degradation, and, on the other hand, they synthesize enzymes capable of cellulose decomposition. Two groups of wood-destroying fungi are widely known in this respect - brown-rot fungi producing cellulolytic enzymes and white-rot fungi possessing not only cellulases but also lig-ninolytic oxidative enzymes. Currently, the physiology, biochemistry and genetics of basidial fungi are being actively researched. Thanks to the intensive development of bioinformatics resources, the transcriptomes, proteomes and secretomes of higher fungi are being analysed. At all three levels, both the biochemical mechanisms of degradation of different wood types by basidiomycetes are being studied and the spectrum of enzymes of the lignocellulolytic complex involved in these processes is being revealed. However, despite the identified general regularities, the specific mechanism of wood degradation is determined by individual peculiarities of fungal enzyme systems engaged in this process. The demand for lignocellulolytic complex enzymes for biotechnology purposes continues to grow steadily, since in addition to their ability to modify complex organic polymers, these enzymes break down a wide range of substrates of both natural and anthropogenic origin. New biotechnologically promising producers of ligninases and cellulases with high biodegradation potential are constantly searched for. In this work, we present data on 14 species of xylotrophic basidiomycete fungi new to Bryansk Oblast, including little-known species Conferticium ravum, Phlebia tremel-loidea, Physisporinus crocatus, with information on woody substrates and habitats occupied within the territory of the Bryanskiy Les State Nature Reserve, as well as data on general distribution and finds of these species in adjacent regions. Among hosts for revealed species of wood-inhabiting fungi, the main forest-forming trees such as Betula pendula, Picea abies, Pinus sylvestris, Populus tremula, and Quercus robur are noted. The majority of fungal cultures are obtained from basidiospores and basidiomata grown on coniferous wood. Herbarium specimens of the identified species are catalogued and stored in the Mycological Herbarium of the Komarov Botanical Institute RAS (LE), and fungal strains are deposited in the Komarov Botanical Institute Basidiomycetes Culture Collection (LE-BIN, St. Petersburg, Russia). All collected specimens and pure cultures of studied aphyllophoroid fungi are determined and verified based on both microscopic features and molecular genetic data. Physiological and biochemical characterization, including assessment of their growth rate and detection of enzymatic activity by rapid screening, was given for 16 strains of wood-dwelling fungi. The linear growth rate was measured by culturing pure cultures on standard MEA medium. The activities of ligninolytic and cellulolytic enzyme complexes were registered using the application method that is widely applied for the primary biochemical screening of strains in many culture collections worldwide. The agarized medium containing ABTS (2,2'-azino-bis 3-ethylbenzothiazoline-6-sul-fonic acid) was used for detection of oxidative enzyme activity while the cellulase activity was studied on the agarized medium with CMC (carboxymethyl cellulose). The strain LE-BIN 4006 of Phlebia tremelloidea showed high ligninolytic and cellulolytic potential and rapid colony growth rate. This strain can be recommended for further biotechnological applications. The strains LE-BIN 4422 of Emmia latemarginata and LE-BIN 3999 of Phanerochaete livescens demonstrated high cellulolytic complex enzyme activity despite the detected medium colony growth rate and medium oxidative enzyme activity. Thus, based on the screening results, three strains of fungi belonging to the order Polyporales have been identified as being of practical interest for use in biotechnological delignification and remediation processes. The importance of screening studies on active enzymatic producers among not only widespread taxa, but also by including rare and little-collected species of fungi are demonstrated. The article contains 2 figures, 1 table, 48 references. The authors are grateful to Elena F. Sitnikova (deputy director of the Bryanskiy les State Nature Reserve) for help with the organisation of field studies. The Authors declare no conflict of interest.

Download file
Counter downloads: 5

Keywords

Basidiomycota, biodiversity, cellulases, DNA barcodes, ligninases, pure culture, xylotrophic fungi

Authors

NameOrganizationE-mail
Volobuev Sergey V.Komarov Botanical Institute RASsergvolobuev@binran.ru
Shakhova Nataliya V.Komarov Botanical Institute RASnshakhova@binran.ru
Всего: 2

References

Malgas S., Mafa M.S., Mkabayi L., Pletschke B.I. A mini review of xylanolytic enzymes with regards to their synergistic interactions during hetero-xylan degradation. World J Microbiol Biotechnol. 2019;35:art.187(1-13).
Hatakka A. Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiology Reviews. 1994;13(2-3):125-135.
Behr M., El Jaziri M., Baucher M. Lignin: an innovative, complex, and highly flexible plant material/component. In: Lignin-based materials for biomedical applications. Santos HA, Figueiredo P, editors. Elsevier Publ.; 2021. pp. 35-60.
Kumar A., Chandra R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. 2020;6(2):e03170.
Rytioja J., Hilden K., Yuzon J., Hatakka A., De Vries RP, Makela MR. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiology and Molecular Biology Reviews. 2014;78(4):614-649.
Castano J., Zhang J., Zhou M., Tsai C.F., Lee J.Y., Nicora C., Schilling J. A fungal secretome adapted for stress enabled a radical wood decay mechanism. Mbio. 2021;12(4):e02040-21.
Glazunova O.A., Moiseenko K.V., Savinova O.S., Fedorova T.V. Purification and characterization of two novel laccases from Peniophora lycii. Journal of Fungi. 2020;6(4):art.340.
Rivera-Hoyos C.M., Morales-Alvarez E.D., Poutou-Pinales R.A., Pedroza- Rodrigue A.M., Rodrlguez-Vazquez R., Delgado-Boada J.M. Fungal laccases. Fungal Biology Reviews. 2013;27(3-4):67-82.
Levasseur A., Lomascolo A., Chabrol O., Ruiz-Duenas F.J., Boukhris-Uzan E., Piumi F., Kties U., Ram A.F., Murat C., Haon M., Benoit I., Arfi Y., Chevret D., Drula E., [etc.] The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown. BMC Genomics. 2014;15:art.486.
Savinova O.S., Moiseenko K.V., Vavilova E.A., Chulkin A.M., Fedorova T.V., Tyazhelova T.V., Vasina D.V. Evolutionary relationships between the laccase genes of Polyporales: orthology-based classification of laccase isozymes and functional insight from Trametes hirsuta. Frontiers in microbiology. 2019;10:art.152.
Brijwani K., Rigdon A., Vadlani P.V. Fungal laccases: production, function, and applications in food processing. Enzyme Research. 2010;2010:article ID 149748(1-10).
Kulikova N.A., Klein O.I., Stepanova E.V., Koroleva O.V. Use of basidiomycetes in industrial waste processing and utilization technologies: fundamental and applied aspects. Applied Biochemistry and Microbiology. 2011;47(6):565-579.
Virk A.P., Sharma P., Capalash N. Use of laccase in pulp and paper industry. Biotechnol. Prog. 2012;28(1):21-32.
Kudanga T., Le Roes-Hill M. Laccase applications in biofuels production: current status and future prospects. Appl Microbiol Biotechnol. 2014;98(15):6525-6542.
Placido J., Capareda S. Ligninolytic enzymes: a biotechnological alternative for bioethanol production. Bioresour. Bioprocess. 2015;2:art.23(1-12).
Rivera-Hoyos C.M., Morales-Alvarez E.D., Poutou-Pinales R.A., Pedroza-Rodriguez A.M., Rodrlguez-Vazquez R., Delgado-Boada J.M. Fungal laccases. Fungal Biology Reviews. 2013;27(3-4):67-82.
Bernicchia A., Gorjon S.P. Corticiaceae s.l. Fungi Europaei no. 12: Alassio: Candusso Publ.; 2010. 1008 p.
Bernicchia A., Gorjon S.P. Polypores of the Mediterranean Region. Segrate: Romar Publ.; 2020. 904 p.
Ryvarden L., Melo I. Poroid fungi of Europe (2nd edition). Synopsis Fungorum 37. Oslo: Fungiflora Publ.; 2017. 431 p.
Index Fungorum. CABI Bioscience, 2022. [Electronic resource]. Avaliable at: http://www.indexfungorum.org (accessed 25.10.2022).
Shakhova N.V., Volobuev S.V. Revealing new active and biotechnologically perspective producers of oxidative and cellulolytic enzymes among pure cultures of xylotrophic Agaricomycetes from the Southern Non-Chernozem zone of the European part of Russia. Curr Res Environ Appl Mycol J Fungal Biol. 2020;10(1):113-119.
Shakhova N.V., Volobuev S.V. Culture characteristics and enzymatic activity of Sarcodontia crocea (Basidiomycota) strains collected from the Central Russian Upland. Mikologiya i fitopatologiya. 2020;54(6):446-451.
White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. New York: Academic Press; 1990. pp. 315-322.
Gardes M., Bruns T.D. ITS primers with enhanced specificity for basidiomycetes -application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113-118.
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-2729.
Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. GenBank. Nucleic Acids Research. 2013;41(D1):D36-D42.
Niku-Paavola M., Raaska L., Itavaara M. Detection of white-rot fungi by a non-toxic stain. Mycol Res. 1990;94(1):27-31.
Tekere M., Mswaka A.Y., Zvauya R., Read J.S. Growth, dye degradation and ligninolytic activity studies on Zimbabwean white rot fungi. Enzym Microb Technol. 2001;28(4-5):420-426.
Dorfner R., Ferge T., Kettrup A., Zimmermann R., Yeretzian C. Real-time monitoring of 4-vinylguaiacol, guaiacol, and phenol during coffee roasting by resonant laser ionization time-of-flight mass spectrometry. J Agric Food Chem. 2003;51(19):5768-5773.
Pointing S.B. Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers. 1999; 2:17-33.
Pritsch K., Courty P.E., Churin J.L., Cloutier-Hurteau B., Arif Ali M., Damon C., Duchemin M., Egli S., Ernst J., Fraissinet-Tachet L., Kuhar F., Legname E., Marmeisse R., Muller A., Nikolova P., Peter M., Plassard C., Richard F., Schloter M., Selosse M.A., Franc A., Garbaye J. Optimized assay and storage conditions for enzyme activity profiling of ectomycorrhizae. Mycorrhiza. 2011;21:589-600.
Volobuev S., Shakhova N. Towards the discovery of active lignocellulolytic enzyme producers: a screening study of xylotrophic macrofungi from the Central Russian Upland. Iran J Sci Technol Trans Sci. 2022;46(1):91-100.
Miettinen O., Spirin V., Niemela T. Notes on the genus Aporpium (Auriculariales, Basidiomycota), with a new species from temperate Europe. Ann. Bot. Fennici. 2012;49(5):359-368.
Volobuev S.V., Bolshakov S.Y., Kalinina L.B., Kapitonov V.I., Popov E.S., Sarkina I.S., Rebriev Y.A., Leostrin A.V, Efimova A.A., Shakhova N.V., Ezhov O.N., Isaeva L.G., Kryuchkova O.E., Zmitrovich I.V. New species for regional mycobiotas of Russia. 7. Report 2022. Mikologiya i fitopatologiya. 2022;56(6):383-392.
Hallenberg N. The Lachnocladiaceae and Coniophoraceae of North Europe. Oslo: Fungiflora Publ.; 1985. 96 p.
Volobuev S.V., Bolshakov S.Y., Khimich Y.R., Shiryaev A.G., Rebriev Y.A., Potapov K.O., Popov E.S., Kapitonov V.I., Palamarchuk M.A., Kalinina L.B., Kosolapov D.A., Stavishenko I.V., Perevedentseva L.G., Vlasenko V.A., [etc.] New species for regional mycobiotas of Russia. 6. Report 2021. Mikologiya i fitopatologiya. 2021;55(6):411-422.
Bolshakov S.Y., Potapov K.O., Ezhov O.N., Volobuev S.V., Khimich Y.R., Zmitrovich I.V. New species for regional mycobiotas of Russia. 1. Report 2016. Mikologiya i fitopatologiya. 2016;50(5):275-286.
Volobuev S.V. Afilloforoidnye griby Orlovskoy oblasti: taksonomicheskiy sostav, rasprostranenie, ekologiya [Aphyllophoroid fungi of Oryol Region: taxonomical composition, distribution, ecology]. St. Petersburg: Lan' Publ.; 2015. 304 p. In Russian.
Popov E.S., Volobuev S.V. Novye dannye o derevoobitayushchikh makromitsetakh klyuchevykh okhranyaemykh prirodnykh territoriy Yugo-Zapadnogo Nechernozem'ya [New data on wood-inhabiting macromycetes in key protected areas of the South-Western part of the Non-Chernozem zone]. Mikologiya i fitopatologiya. 2014;48(4):231-239. In Russian, English summary.
Barsukova T.N. Ksilotrofnye griby Tsentral'nochernozemnogo biosfernogo zapovednika [Xylotrophic fungi of the Central Chernozem Biosphere Reserve]. Mikologiya i fitopatologiya. 2000;34(5):1-7. In Russian, English summary.
Spirin V., Vlasak J., Rivoire B., Kout J., Kotiranta H., Miettinen O. Studies in the Ceriporia purpurea group (Polyporales, Basidiomycota), with notes on similar Ceriporia species. Cryptogamie, Mycologie. 2016;37(4):421-435.
Vyyavlenie i obsledovanie biologicheski tsennykh lesov na Severo-Zapade Evropeyskoy chasti Rossii. T. 2. Posobie po opredeleniyu vidov, ispol'zuemykh pri obsledovanii na urovne vydelov [Survey of biologically valuable forests in North-Western European Russia. Vol. 2. Identification manual of species to be used during survey at stand level]. St. Petersburg; 2009. 258 p. In Russian.
Bolshakov S.Y., Volobuev S.V., Potapov K.O., Shiryaev A.G., Shiryaeva O.S., Ezhov O.N., Rebriev Y.A., Palamarchuk M.A., Khimich Y.R., Borovichev E.A., Zmitrovich I.V. New species for regional mycobiotas of Russia. 3. Report 2018. Mikologiya i fitopatologiya. 2018;52(6):386-397.
Bondartseva M.A. 1998. Opredelitel' gribov Rossii. Poryadok afilloforovye; Vyp. 2: Semeystva al'batrellovye, aporpievye, boletopsievye, bondartsevievye, ganodermovye, kortitsievye (vidy s poroobraznym gimenoforom), lakhnokladievye (vidy s trubchatym gimenoforom), poliporovye (rody s trubchatym gimenoforom), porievye, rigidoporovye, feolovye, fistulinovye.... St. Petersburg: Nauka Publ.; 1998. 391 p. In Russian.
Volobuev S., Okun M., Ordynets A., Spirin V. The Phanerochaete sordida group (Polyporales, Basidiomycota) in temperate Eurasia, with a note on Phanerochaete pallida. Mycol Progress. 2015;14(10):art.80(1-13).
Zmitrovich I.V, Ezhov O.N. Ecology and plectology of Phlebia tremelloidea (Polyporales, Agaricomycetes). Acta Mycol. 2011;46(1):19-25.
Eriksson J., Ryvarden L. The Corticiaceae of North Europe. Vol. 4: Hyphodermella -Mycoacia. Oslo: Fungiflora Publ.; 1976. Pp. 549-886.
Jaczewski A. IV serie de materiaux pour la flore mycologique du Gouvernement de Smolensk. Bulletin de la Societe Imperiale des Naturalistes de Moscou. Nouvelle serie. 1898;11(3):421-436.
 <i>In vitro</i> assessment of ligninolytic and cellulolytic activities for 14 <i>Agaricomycetes</i> species, new to Bryansk Oblast (European Russia) | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2023. №  63. DOI: 10.17223/19988591/63/4

In vitro assessment of ligninolytic and cellulolytic activities for 14 Agaricomycetes species, new to Bryansk Oblast (European Russia) | Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya - Tomsk State University Journal of Biology. 2023. № 63. DOI: 10.17223/19988591/63/4

Download full-text version
Counter downloads: 130